Skip to main content

Advertisement

Log in

Ultrasound velocity changes at the proximal phalanxes of the hand in pre-, peri- and postmenopausal women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

We evaluated the bone tissue modifications which occur in pre-, peri- and postmenopausal women by means of an ultrasound (US) device which measures US propagation velocity in the distal metaphysis of the proximal phalanxes of the hand. Before starting the study, two operators assessed the in vivo short-term precision of the device in 12 volunteers, each measured 10 times (5 times by each operator). Then the US velocity in the dominant (DO) and non-dominant (ND) hand was measured in 228 women to evaluate whether there was a difference between US values measured at these sites. Finally, another selected group of 417 healthy pre-, peri- and postmenopausal women, aged from 40 to 65 years, was studied to evaluate the physiological climacteric changes in the US parameter measured: amplitude-dependent speed of sound (AD-SoS). In the 12 volunteers, intra- and inter-observer short-term precision (CV) was 0.4% (for both the operators) and 1.0%, respectively. DO and ND hand AD-SoS values (2074.1±63.8 m/s and 2077.1±65.5 m/s, respectively) proved to be highly correlated (r=0.96,p<0.0001) in the 228 women studied. AD-SoS distribution (417 subjects) was correlated with age, climacteric condition (premenopause with regular or irregular cycles and natural postmenopause) and body mass index (BMI). In premenopause (253 subjects) the US velocity was higher among women with regular cycles (2107.2±48.5 m/s) than among those with irregular cycles (2074.7±44.1 m/s) (p<0.0001). In postmenopause (164 subjects) an inverse correlation between AD-SoS and the time elapsed since menopause was found (r=−0.42,p<0.0001). Furthermore, age and BMI were shown to be inversely related to AD-SoS (r=−0.47,p<0.0001 andr=−0.30,p<0.0001, respectively) when evaluated in the whole study group. The results obtained confirm that US transmission at the phalanxes is sensitive to pre-, peri- and postmenopausal bone changes. Further studies are needed to evaluate its ability to predict osteoporotic fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross PD, Wasnich RD, Davis JW, Vogel JM. Estimating remaining lifetime fracture probability from bone mineral measurements, age and other factors. J Bone Miner Res 1989;4(Suppl 1):185.

    Google Scholar 

  2. Melton LJ, Warmer HW, Richelson LS, O'Fallon WM, Riggs BL. Osteoporosis and the risk of hip fracture. Am J Epidemiol 1986;124:254–61.

    Google Scholar 

  3. Eastell R, Riggs BL, Wahner HW, O'Fallon WM, Amadio PC, Melton LJ III. Colles' fracture and bone density of the ultradistal radius. J Bone Miner Res 1989;4:607–13.

    Google Scholar 

  4. Wasnich RD. Fracture prediction with bone mass measurements. In: Genant HK, editor. Osteoporosis update 1987. San Franciso: Radiology Research and Education Foundation, 1987:95–101.

    Google Scholar 

  5. Heaney RP. Osteoporotic fracture space: an hypothesis. Bone Miner 1989;6:1–13.

    Google Scholar 

  6. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fracture in women. JAMA 1990;263:665–8.

    Google Scholar 

  7. Jergas M, Genant HK. Current methods and recent advances in the diagnosis of osteoporosis. Arthritis Rheum 1993;36:1649–62.

    Google Scholar 

  8. Heaney RP, Avioli LV, Chesnut CH III, Lappe J, Recker RR, Brandenburger GH. Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 1989;261:2986–90.

    Google Scholar 

  9. Glüer CC, Wu CY, Jergas M, Goldstein SA, Genant HK. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 1994;55:46–52.

    Google Scholar 

  10. Langton CM, Evans GP. Dependence of ultrasonic velocity and attenuation on the material properties of cancellous bone. Osteoporosis Int 1991;1:194.

    Google Scholar 

  11. Glüer CC, Wu CY, Genant HK. Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporosis Int 1993;3:185–91.

    Google Scholar 

  12. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 1984;13:89–91.

    Google Scholar 

  13. De Aloysio D, Mauloni M, Ventura V, Bottiglioni F, Valdrè G. Diagnostica ultrasonografica dell'osteoporosi postmenopausale. In: De Aloysio D, Mauloni M, Ventura V, Bottiglioni F, editors. Diagnostica dell'osteoporosi postmenopausale. Milan: Media-mix, 1994:115–34.

    Google Scholar 

  14. Mazess RB, Trempe J, Barden H. Ultrasound measurements of the os calcis. Calcif Tissue int 1993;52:165.

    Google Scholar 

  15. Baran DT, Kelly AM, Karellas A, et al. Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 1988;43:138–42.

    Google Scholar 

  16. Hans D, Dargent P, Schott AM, et al. Ultrasound parameters predict hip fracture independently of hip bone density: the EPIDOS prospective study [abstract]. J Bone Miner Res 1995;10(Suppl 1):169.

    Google Scholar 

  17. Schott AM, Weill-Engerer S, Hans D, Duboeuf F, Delmas PD, Meunier PJ. Ultrasound discriminates patients with hip-fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 1995;10:243–9.

    Google Scholar 

  18. Waud CE, Lew R, Baran DT. The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women. Calcif Tissue Int 1992;51:415–8.

    Google Scholar 

  19. McKelvie ML, Fordham J, Clifford C, Palmer SB. In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone 1989;10:101–4.

    Google Scholar 

  20. Poet JL, Serabian IT, Camboulives H, Dufour M, Roux H. Broadband ultrasound attenuation of the os calcis: preliminary study. Clin Rheumatol 1994;13:234–8.

    Google Scholar 

  21. Mazess RB, Trempe J, Barden H. Ultrasound bone densitometry of the os calcis. J Bone Miner Res 1992;7:S186

    Google Scholar 

  22. Alenfeld FE, Wüster C, Beck C, Ziegler R. Validity of ultrasound measurements of bone mineral density on the phalanges of the hand [abstract]. Proceedings of Perth International Bone Meeting, Satellite of the XIIth International Conference on Calcium Regulating Hormones, Melbourne, 14–19 February 1995. Scott Wilson & Ivan Price, 1995.

  23. Fredfeldt KE. Sound velocity in the middle phalanges of the human hand. Acta Radiol Diagn 1986;27:95–6.

    Google Scholar 

  24. Jergas M, Uffmann M, Müller P, Köster O. Ultraschallgeschwin-digkeitsmessung zur Diagnose der postmenopausalen Osteoporose. Fortschr Rontgenstr 1993;158:207–13.

    Google Scholar 

  25. Rico H, Aguado F, Revilla M, Villa LF, Martín FJ. Ultrasound bone velocity and metacarpal radiogrammetry in hemodialyzed patients. Miner Electrolyte Metab 1994;20:103–6.

    Google Scholar 

  26. Rico H, Revilla M, Fraile E, Martín FJ, Cardenas JL, Villa LF. Metacarpal cortical thickness by computer radiography in osteoporosis. Bone 1994;15:303–6.

    Google Scholar 

  27. Chang CL, Chan HP, Niklason LT, Cobby M, Crabbe J, Adler RS. Computer-aided diagnosis: detection and characterisation of hyperparathyroidism in digital hand radiographs. Med Phys 1993;20:983–92.

    Google Scholar 

  28. Miller CG, Herd RJM, Ramalingam T, Fogelman I, Blake GM. Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporosis Int 1993;3:31–5.

    Google Scholar 

  29. Alenfeld FE, Wüster C, Beck C, Meeder PJ, Ziegler R. Quantitative ultrasound of the phalanges: separation of osteoporotic and non-osteoporotic fractures [abstract]. J Bone Miner Res 1995;10 (Suppl 1):272.

    Google Scholar 

  30. De Aloysio D, Villecco AS, Fabiani AG, et al. Body mass index distribution in climacteric women. Maturitas 1988;9:359–66.

    Google Scholar 

  31. Blake GM, Jagathesan T, Herd RJM, Fogelman I. Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/lateral studies. Br J Radiol 1994;67:624–30.

    Google Scholar 

  32. Rico H, Revilla M, Villa LF, Alvarez de Buergo M. Age-related differences in total and regional bone mass: a cross-sectional study with DXA in 429 normal women. Osteoporosis Int 1993;3:154–9.

    Google Scholar 

  33. Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL. Comparison of dual-energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc 1988;63:1075–84.

    Google Scholar 

  34. Glüer CC, Steiger P, Selvidge R, et al. Comparative assessment of dual-photon absorptiometry and dual-energy radiography. Radiology 1990;174:223–8.

    Google Scholar 

  35. Mazess RB, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual energy X-ray bone densitometer. Calcif Tissue Int 1989;44:228–32.

    Google Scholar 

  36. Yamazaki K, Kushida K, Ohmura A, Sano M, Inoue T. Ultrasound bone densitometry of the os calcis in Japanese women. Osteoporosis Int 1994;4:220–5.

    Google Scholar 

  37. Naessén T, Mallmin H, Ljunghall S. Heel ultrasound in women after long-term ERT compared with bone densities in the forearm, spine and hip. Osteoporosis Int 1995;5:205–10.

    Google Scholar 

  38. Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 1995;17:205–10.

    Google Scholar 

  39. Jones PRM. Broadband ultrasonic attenuation in active and sedentary men and women. HUMAG Research Group, Dept of Human Sciences, Loughborough University, Leicestershire LE11 3TU. Ultrasonic assessment of osteoporosis and bone development: an expert workshop, Cologne, March 1992.

  40. Jones PRM, Hardman AE, Hudson A, Norgan NG. Influence of brisk walking on the broadband ultrasonic attenuation of the calcaneus in previously sedentary women aged 30–61 years. Calcif Tissue Int 1991;49:112–5.

    Google Scholar 

  41. Jergas M, Uffmann M, Wittenberg R, Müller P, Köster O. Ultraschallgeschwindigkeitsmessungen an belastungstragenden und nicht-belastungstragenden Stellen des peripheren Skeletts: der Einfiuss k örperlicher Aktivität bei Fussballspielern. Fortschr Rontgenstr 1992;157:420–4.

    Google Scholar 

  42. Mautalen C, Vega E, González D, Carrilero P, Otano A, Silberman F. Ultrasound and dual X-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int 1995;57:165–8.

    Google Scholar 

  43. US Preventive Services Task Force. Screening for postmenopausal osteoporosis. Guide to clinical preventive services: report of the US Preventive Services Task Force. Baltimore: Williams & Wilkins, 1989:239–43.

    Google Scholar 

  44. De Aloysio D, Mauloni M, Ventura V, Mura M, Zuanetti M, Bottiglioni F. Vertebral bone mineral density in different climacteric conditions. Ital J Miner Electrolyte Metab 1995;9:21–5.

    Google Scholar 

  45. Colson F, Bouysset M, Cosnier L, Rouillat M, Duivon JP. Bone mineral density of the lumbar spine and femoral neck in normal French women measured with Norland XR-26 densitometer. In: Abstracts: Proceedings of the Third International Symposium on Osteoporosis, Copenhagen, Denmark, 1990:67.

  46. Truscott JG, Oldroyd B, Simpson M, et al. Variation in lumbar spine and femoral neck bone mineral measured by dual energy X-ray absorption: a study of 329 normal women. Br J Radiol 1993;66:514–21.

    Google Scholar 

  47. Butz S, Wüster C, Scheidt-Nave C, Götz M, Ziegler R. Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporosis Int 1994;4:179–84.

    Google Scholar 

  48. Lusenti T, Cadossi R, Franco V, Soliani F, Rustichelli R, Borgatti PP. Evaluation with ultrasound of bone quality at the proximal phalanges of the hand in patients suspected for type I osteoporosis. Minerva Ginecol 1994;46:423–8.

    Google Scholar 

  49. Ultrasound densitometry: predicts hip fracture. Lunar News (Lunar Corp, USA) 1995;[April]:9–11.

  50. Sili Scavalli A, Cremona A, Spadaro A, Riccieri V, Marini M, Isani R. Correlation among different methodologies in the study of osteoporosis [abstract]. J Bone Miner Res 1995;10 (Suppl 1):471.

    Google Scholar 

  51. Rico H, Aguado F, Revilla M, Martín FJ, Arribas I. Comparación de la velocidad de transmisión del ultrasonido con la radiogrametría metacarpiana computada, como medidas de masa ósea. Rev Esp Enferm Metab Oseas 1994;3:48–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, V., Mauloni, M., Mura, M. et al. Ultrasound velocity changes at the proximal phalanxes of the hand in pre-, peri- and postmenopausal women. Osteoporosis Int 6, 368–375 (1996). https://doi.org/10.1007/BF01623010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01623010

Keywords

Navigation