Skip to main content

History of blood gas analysis. III. Carbon dioxide tension

Abstract

The measurement of carbon dioxide tension (Pco 2) owes its development to the 1952 polio epidemics in Copenhagen and the United States, during which artificial ventilation was first widely and effectively used and it was necessary to assess its effectiveness.Pco 2 had been determined by various “bubble methods” in which carbon dioxide (CO2) was measured in gas equilibrated with blood at body temperature, or by one of two methods using the manometric apparatus of Van Slyke: interpolation on a plot of CO2 content versus equilibration gasPco 2 or use of the Henderson-Hasselbalch equation to calculatePco 2 from pH and plasma CO2 content. In 1954 Richard Stow described a CO2 electrode—a new concept—using a rubber membrane permeable to CO2 to separate a wet pH and reference electrode from the blood sample. This was the first membrane electrode, a device now used in hundreds of different ways. Severinghaus developed Stow's electrode, stabilizing it with a bicarbonate-salt solution and a spacer. The CO2 electrode concept had occurred to Gesell in 1925, but for measurement of gas only, and to Gertz and Loeschcke, who were unaware of the Stow-Severinghaus electrode, in 1958. The development of the CO2 electrode terminated the use of bubble methods, the Van Slyke methods, and the Astrup technique and at the same time reinforced the Astrup-Siggaard-Andersen acid-base analytic theory.

References

  1. Severinghaus JW, Astrup PB: History of blood gas analysis. II. pH and acid-base balance measurements. J Clin Monit 1985;1:259–277

    PubMed  Article  CAS  Google Scholar 

  2. Pflüger E: Zur Gasometrie des Blutes. Zentralbl Med Wiss (Berlin) 1866;4:305–308

    Google Scholar 

  3. Krogh A: Some new methods for the tonometric determination of gas-tensions in fluids. Skand Arch Physiol 1908;20:259–278

    Google Scholar 

  4. Krogh A, Krogh M: On the tensions of gases in the arterial blood. Skand Arch Physiol 1910;23:179–192

    Google Scholar 

  5. Ferguson JKW: Method to measure tension of carbon dioxide in small amounts of blood. J Biol Chem 1932;95:301–310

    CAS  Google Scholar 

  6. van Slyke DD, Sendroy J Jr, Liu SH: Manometric analysis of gas mixtures. III. Manometric determination of carbon dioxide tension and pHs of blood. J Biol Chem 1932;95:547–568

    Google Scholar 

  7. Scholander PF, Flemister SC, Irving L: Microgasometric estimation of blood gases; combined carbon dioxide and oxygen. J Biol Chem 1947;169:173–181

    CAS  Google Scholar 

  8. Roughton FJW, Lyster RLJ: Some combinations of the Scholander-Roughton syringe capillary and van Slyke's gasometric techniques, and their use in special haemoglobin problems. (Oslo) Hvalradets Skrifter Norske Vedenskaps-Akad 1965;48:185–198

    Google Scholar 

  9. Riley RL, Proemmel DO, Franke RE: Direct method for determination of O2 and CO2 tensions in blood. J Biol Chem 1945;161:621–633

    CAS  Google Scholar 

  10. Riley RL, Campbell EJM, Shepard RH: Rubble method for estimation ofPco 2 andPo 2 in whole blood. J Appl Physiol 1957;11:245–249

    PubMed  CAS  Google Scholar 

  11. Singer RB, Shohl J, Bluemle DB: Simultaneous determination of pH, CO2 content, and cell volume in 0.1 ml aliquots of cutancous blood. Clin Chem 1955;1:287–316

    PubMed  CAS  Google Scholar 

  12. Severinghaus JW, Astrup PB: History of blood gas analysis. I. The development of electrochemistry. J Clin Monit 1985;1:180–192

    PubMed  Article  CAS  Google Scholar 

  13. Warburg EJ: Studies on carbonic acid compounds and hydrogen ion activities in blood and salt solution—a contribution to the theory of the equation of L. J. Henderson and K. A. Hasselbalch. Biochem J 1922;16:153–340

    PubMed  CAS  Google Scholar 

  14. Hastings AB, Sendroy J: The effect of variations in ionic strength on the apparent first and second dissociation constants of carbonic acid. J Biol Chem 1925;65:445–455

    CAS  Google Scholar 

  15. Dill DB, Daly C, Forbes WH: The pK' of serum and red cells. J Biol Chem 1937;117:569–579

    CAS  Google Scholar 

  16. Severinghaus JW, Stupfel M, Bradley AF: Accuracy of pH andPco 2 determination. J Appl Physiol 1956;9:189–196

    PubMed  CAS  Google Scholar 

  17. Severinghaus JW, Stupfel M, Bradley AF: Variations of pK' with pH and temperature. J Appl Physiol 1956;9:197–200

    PubMed  CAS  Google Scholar 

  18. Siggaard-Andersen O: Factors affecting the liquid junction potential in electrometric blood pH measurement. Scand J Clin Lab Invest 1961;13:205–211

    Article  Google Scholar 

  19. Siggaard-Andersen O: The first dissociation exponent of carbonic acid as a function of pH. Scand J Clin Lab Invest 1962;14:587–597

    Article  CAS  Google Scholar 

  20. Austin WH, Littlefield SC: The difference in apparent pH of blood and buffer caused by raising the liquid junction from room temperature to 37.5°C. J Lab Clin Med 1966;67:516–519

    PubMed  CAS  Google Scholar 

  21. Semple SJG: Observed pH differences of blood and plasma with different bridge solutions. J Appl Physiol 1961;16:576–577

    PubMed  CAS  Google Scholar 

  22. Bradley AF Jr, Severinghaus JW: Errors in pH measurement arising in calomel electrodes. Fed Proc 1958;17:68

    Google Scholar 

  23. Siggaard-Andersen O: The acid-base status of the blood. 4th ed. Copenhagen: Munksgaard, 1974:1–229

    Google Scholar 

  24. Siggaard-Andersen O: Stoichiometric concentration and chemical potential. Scand J Clin Lab Invest 1977;37:7–14

    Article  CAS  Google Scholar 

  25. Maas AHJ, Rispens P, Siggaard-Andersen O, Zijlstra WG: On the reliability of the Henderson-Hasselbalch equation in routine clinical acid-base chemistry. Ann Clin Biochem 1984;21:26–39

    PubMed  CAS  Google Scholar 

  26. Jacobs MH: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am J Physiol 1920;53:457–463

    CAS  Google Scholar 

  27. Gesell R, McGinty DA: Regulation of respiration VI: Continuous electrometric methods of recording changes in expired carbon dioxide and oxygen. Am J Physiol 1926;79:72–90

    CAS  Google Scholar 

  28. Trubuhovich RV: History of PCO2 electrodes. Br J Anaesth 1970;42:360

    PubMed  Article  CAS  Google Scholar 

  29. Stow RW, Randall BF: Electrical measurement of thePco 2 of blood. Abstract. Am J Physiol 1954;179:678

    Google Scholar 

  30. Stow RW, Baer RF, Randall B: Rapid measurement of the tension of carbon dioxide in blood. Arch Phys Med Rehabil 1957;38:646–650

    PubMed  CAS  Google Scholar 

  31. Severinghaus JW, Bradley AF: Electrodes for bloodPo 2 andPco 2 determination. J Appl Physiol 1958;13:515–520

    PubMed  CAS  Google Scholar 

  32. Woolmer RF: A symposium on pH and blood gas measurement. Methods and interpretation. London: Churchill, 1959

    Google Scholar 

  33. Lunn JN, Mapleson WW: The SeveringhausPco 2 electrode: A theoretical and experimental assessment. Br J Anaesth 1963;35:666–678

    Article  Google Scholar 

  34. Severinghaus JW: Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology 1960;21:717–726

    PubMed  Article  CAS  Google Scholar 

  35. Severinghaus JW: Electrodes for blood and gasPco 2,Po 2 and blood pH. Acta Anaesthesiol Scand 1962;11:207–220

    CAS  Google Scholar 

  36. Fatt I: Rapidly responding carbon dioxide and oxygen electrodes. J Appl Physiol 1964;19:550–553

    PubMed  CAS  Google Scholar 

  37. Crampton-Smith A, Hahn CEW: Electrodes for the measurement of oxygen and carbon dioxide tensions. Br J Anaesth 1969;41:731–741

    Article  Google Scholar 

  38. Severinghaus JW: Measurement of blood gases:Po 2 andPco 2. Ann NY Acad Sci 1968; 148:115–132

    PubMed  Article  CAS  Google Scholar 

  39. Gertz KH, Loeschcke HH: Elektrode zur bestimmung des CO2 drucks. Naturwissenschaften 1958;45:160–161

    CAS  Google Scholar 

  40. Hertz CH, Siesjo B: A rapid and sensitive electrode for continuous measurement ofPco 2 in liquids and tissue. Acta Physiol Scand 1959;47:115–123

    PubMed  CAS  Article  Google Scholar 

  41. Snell FM: Electrometric measurement of carbon dioxide and bicarbonate ion. J Appl Physiol 1960;15:729–732

    PubMed  CAS  Google Scholar 

  42. Reyes RJ, Neville JR: A rapid electrochemical technique for measuring carbon dioxide content of blood. Clin Chem 1968;14:637–645

    PubMed  CAS  Google Scholar 

  43. van Kempen LHJ, Kreuzer F: A single-unit CO2-oxygen sensing microelectrode system. Respir Physiol 1975;23:371

    PubMed  Article  CAS  Google Scholar 

  44. van Kempen LHJ, Kreuzer F: The CO2 conductivity electrode, a fast-responding CO2 microelectrode. Respir Physiol 1975;24:89–106

    PubMed  Article  Google Scholar 

  45. Lutmann A, Mückenhoff K, Loeschcke JJ: Fast measurement of the CO2 partial pressure in gases and fluids. Pflügers Arch 1978;375:279–288

    Article  Google Scholar 

  46. Adams AP, Morgan-Hughes JO, Sykes MK: pH and blood-gas analysis. Anaesthesia 1967;22:575–597 and 1968;23:47–64

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Severinghaus, J.W., Astrup, P.B. History of blood gas analysis. III. Carbon dioxide tension. J Clin Monitor Comput 2, 60–73 (1986). https://doi.org/10.1007/BF01619178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01619178

Key words

  • Measurement techniques electrodes
  • Stow
  • carbon dioxide
  • membrane
  • Ventilation
  • artificial
  • polio epidemic