Skip to main content

Advertisement

Log in

A novel sensor for routine continuous spirometry of intubated patients

  • Knowing Your Monitoring Equipment
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

Abstract

Measurement of gas flow and airway pressure at the Y-piece of an endotracheal tube provides valuable information about airway integrity and basic pulmonary function [1]. We describe the working principle and design of the D-lite sensor (Datex Division, Instrumentarium Corporation, Helsinki, Finland), which, in a single, lightweight adaptor piece, encloses flow, airway pressure, and sidestream gas measurement. The main emphasis in the design of this instrument was on reliable and accurate operation during continuous monitoring with exposure to humidity and mucus. Therefore, a robust flow-restrictor element with a pick-off arrangement resembling a Pitot tube was employed. This arrangement has nonlinear characteristics with potential difficulties in the measurement of small flows. However, these inherent drawbacks, together with compensations required because of varying gas fractions and pressure, can be handled by sophisticated computer algorithms at the host-monitor end (Capnomac Ultima [Datex Division, Instrumentarium Corporation, Helsinki, Finland]). Validation methods with main results and a brief review of applications are given.

Abstrakt

Die Messung des Gasstromes und des Atemwegdruckes am Y-Stück eines Endotracheal-Tubus gibt wertvolle Informationen zur Funktionder Atemwege und der Lungenfunktion (1). Wir beschreiben das Funktionsprinzipund den Aufbau des D-lite-Sensors (DATEX Division, Instrumentarium Corporation, Helsinki, Finnland), der in einem einzigen, leichtgewichtigenAnschlußstück die Messung von Gasstrom, Atemwegsdruck und Gasanalyse im Seitenstrom erlaubt. In der Entwurfsphase wurde besonders auf eineverläßliche und genaue Funktion bei kontinuierlichem Überwachungseinsatz unter der Einwirkung von Feuchtigkeit und Sekretbildung geachtet. Deshalb wurde eine robuste Gasstrom-Blende mit einer dem Pitot-Rohr entsprechenden Aufnahmen-Anordnung angewandt. Diese Anordnungweist eine nichtlineare Charakteristik auf, was bei kleinem Gasstrom zu Schwierigkeiten führen könnte. Dieser prinzipbedingte Nachteil wie auch notwendige Kompensationen für variierende Gasanteile und -drucke wird durch hochentwickelte Computeralgorithmen im Monitor gelöst (Capnomac Ultima (Data Division, Instrumentarium Corporation, Helsiniki, Finnland). Methoden zur Validierung und die wichtigsten Ergebnisse werden dargestellt sowie ein Überblick zu Anwendungen gegeben.

Resumen

La mediciòn del flujo de gas y de la presiòn de vìa aèrea entregan informaciòn valiosa en relaciòn a la integridad de la vìa aèrea y de la funciòn pulmonar. Describimos el principio de funcionamiento y el diseño del sensor D-lite (Datex Division, Instrumentarium Corporation, Helsinki, Finland), el cual, en una pieza adaptadora ùnica y liviana, incorpora mediciones de flujo, presiòn de vìa aèrea, y mediciòn de gases lateral al flujo. El mayor ènfasis en el diseño de este instrumento fue su operaciòn exacta y confiable durante monitorizaciòn continuada con exposiciòn a humedad y mucosidades. Por lo tanto, se utilizò un elemento restrictor de flujo robusto, en una disposición de muestreo (“pick-off”) similar al tubo de Pitot. Esta disposiciòn posee caracterìsticas no-lineales con dificultades potenciales en la mediciòn de flujos pequeños. Sin embargo, estas desventajas inherentes, junto con las compensaciones requeridas debido a las fracciones de gas y presiones cambiantes, pudieron ser manejadas mediante algoritmos computacionales sofisticados a nivel del monitor-huèsped (Capnomac Ultima [Data Division, Instrumentarium Corporation, Helsinki, Finland]). Se presentan los mètodos de validaciòn con los resultados principales y una breve revisiòn de las aplicaciones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldman JM. Respiratory monitoring—a perspective. Sem Anesth 1992;11:150–157

    Google Scholar 

  2. Sullivan WJ, Peters GM, Enright PL. Pneumotachographs: Theory and clinical application. Respir Care 1984;29:736–749

    Google Scholar 

  3. Yoshia I, Shimada Y, Tanaka K. Evaluation of a hot-wire respiratory flow-meter for clinical applicability. J Appl Physiol 1979;47:1131–1135

    Google Scholar 

  4. Cox LA, Almeida AP, Robinson JS, Horsley JK. An electronic respirometer. Br J Anaesth 1974;46:302–310

    Article  PubMed  CAS  Google Scholar 

  5. Plaut DI, Webster JG. Ultrasonic measurement of respiratory flow. IEEE Trans Biomed Eng 1980;BME-27:549–558

    Article  Google Scholar 

  6. Buess C, Pietsch P, Guggenbuehl W, Koller EA. Design and construction of an ultrasonic air-flowmeter. IEEE Trans Biomed Eng 1986;BME-33:768–774

    Article  Google Scholar 

  7. White DF, Rodely AE, McMurtrie CL. The vortex shedding flowmeter. Flow: Its measurement. Control Sci Ind 1974;1:967–974

    Google Scholar 

  8. Elliot SE, Shore JH, Barnes CW, et al. Turbulent airflow meter for long-term monitoring in patient-ventilator circuits. J Appl Physiol 1977;42:456–460

    Google Scholar 

  9. Wolf AR, Volgyesi GA. A modified Pitot tube for accurate measurement of tidal volume in children. Anesthesiology 1987;67:775–778

    Article  PubMed  CAS  Google Scholar 

  10. Validation of Capnomac Ultima tidal volume measurement. Helsinki: Datex, 1992:Document #881453

  11. Milic-Emili J, Robatto FM, Bates JHT. Respiratory mechanics in anaesthesia. Brit J Anaesth 1990;65:4–12

    Article  PubMed  CAS  Google Scholar 

  12. Bardoczky GI, d'Hollander A. Continuous monitoring of the flow-volume loops and compliance during anesthesia. J Clin Monit 1992;8:251–252

    Article  PubMed  CAS  Google Scholar 

  13. Huffman LM. Monitoring ventilation and compliance with Sidestream Spirometry. AANA Journal 1991;59:249–258

    PubMed  CAS  Google Scholar 

  14. Huffman LM. Monitoring compliance: A sensitive indicator of chance. AANA Journal 1992;60:217–220

    PubMed  CAS  Google Scholar 

  15. Sidestream Spirometry: Monitoring patient ventilation during anesthesia: Appliguide. Helsinki: Datex, 1992: Document #881418

  16. de Wries JW, Haanschoten MC. Capnography does not reliably detect double-lumen endotracheal tube malplacement. J Clin Monit 1992;8:236–237

    Article  Google Scholar 

  17. Simon BA, Hurford WE, Alfille PH, et al. An aid in the diagnosis of malpositioned double-lumen tubes. Anesthesiology 1992;76:862

    Article  PubMed  CAS  Google Scholar 

  18. Doebelin EO. Measurement systems, application and design. Tokyo: McGraw-Hill, 1976:465–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meriläinen, P., Hänninen, H. & Tuomaala, L. A novel sensor for routine continuous spirometry of intubated patients. J Clin Monitor Comput 9, 374–380 (1993). https://doi.org/10.1007/BF01618680

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01618680

Key words

Navigation