Communications in Mathematical Physics

, Volume 48, Issue 3, pp 267–290 | Cite as

Zero-mass limit in perturbative quantum field theory

  • M. C. Bergère
  • Yuk-Ming P. Lam


A newR-operation which satisfies Bogolubov-Parasiuk and Hepp recurrence and which is infrared and ultra violet convergent graph by graph, is defined in perturbative quantum field theory. This new subtraction scheme is used to achieve the zero-mass limit of a massive field theory.


Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Callan, C. G.: Phys. Rev. D2, 1541 (1970)Google Scholar
  2. 2.
    Symanzik, K.: Commun. math. Phys.18, 227 (1970)Google Scholar
  3. 3.
    Lowenstein, J. H.: Commun. math. Phys.24, 1 (1971)Google Scholar
  4. 4.
    Gell-Mann, M., Low, F.: Phys. Rev.95, 1300 (1954)Google Scholar
  5. 5.
    Bergère, M. C., Lam, Y. M. P.: Commun. math. Phys.39, 1 (1974); and Asymptotic Expansion of Feynman amplitudes, Part II, The divergent case. Freie Universität Berlin, HEP May 74/9Google Scholar
  6. 6.
    Lowenstein, J. H., Zimmermann, W.: Commun. math. Phys.44, 73 (1975)Google Scholar
  7. 7.
    Bogolubov, N. N., Parasiuk, O.: Acta Math.97, 227 (1957)Google Scholar
  8. 7a.
    Bogolubov, N. N., Shirkov, D. W.: Introduction to the theory of quantized fields. New York: Interscience Publ. 1959Google Scholar
  9. 8.
    Hepp, K.: Commun. math. Phys.2, 301 (1966)Google Scholar
  10. 9.
    Symanzik, K.: Progr. Theoret. Phys.20, 690 (1958)Google Scholar
  11. 10.
    Bergère, M. C., Zuber, J. B.: Commun. math. Phys.35, 113 (1974)Google Scholar
  12. 11.
    Zimmermann, W.: Ann. Phys.77, 536 (1973)Google Scholar
  13. 12.
    Weinberg, S.: Phys. Rev.118, 838 (1960)Google Scholar
  14. 13.
    Bergère, M. C., Lam, Y. M. P.: Bogolubov Parasiuk theorem in the α-parametric representation, Saclay preprint, DPh.T/75/89Google Scholar
  15. 14.
    Bergère, M. C., Lam, Y. M. P.: Lectures ou Renormalization Techniques in the α-parametric representation, Course given in Saclay (January 1975), to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. C. Bergère
    • 1
  • Yuk-Ming P. Lam
    • 1
  1. 1.Service de Physique ThéoriqueCentre d'Etudes Nucléaires de SaclayGif-sur-YvetteFrance

Personalised recommendations