Skip to main content
Log in

The effect of mechanical stimulation on the inherent E.M.F. of polar tissues

  • Abhandlungen
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

  1. 1.

    The effect of mechanical stimulation of a portion of the onion root is to reduce, or reverse the sign of, the inherent E.M.F. of the cells of the stimulated region.

  2. 2.

    The effect upon the inherent E.M.F. of a length of root including the stimulated region is dependent upon the direction of fall of potential across the latter. Stimulation of a region whose apical end is positive in the external circuit produces a fall of total potential, while stimulation of a region whose basal end is positive produces a rise in total potential. The effect is instantaneous in all cases.

  3. 3.

    There is no transmission of electrical effect from the stimulated region as shown by: (a) Absence of diphasic variation when stimuli are applied between the electrodes; (b) Absence of any effect when stimuli are applied outside the electrodes; (c) Adequacy of the quadrant electrometer to register the passage of impulses whose velocity does not exceed that of the slower waves recorded for Mimosa; (d) Existence of a negative condition in the stimulated cells as shown by moving the nearer electrode to include the stimulated region.

  4. 4.

    Lund's theory of the origin of bioelectric currents is shown to offer a simple and logical explanation of the facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bishop, G. H. (1928). Galvanic stimuli to nerve. Am. Jour. Phys., Vol. 84, pp. 417–436.

    Google Scholar 

  • Bose, J. C. (1906). Plant responsc. Longmans, Green and Co., London.

    Google Scholar 

  • — (1910), Response in the living and non-living. Longmans, Green and Co., London.

    Google Scholar 

  • — (1926). The nervous mechanism of plants. Longmans, Green and Co., London.

    Google Scholar 

  • Burdon-Sanderson, J. S. (1888). On the electromotive properties of the leaf of Dionaea in the excited and unexcited states. II. Phil. Trans., Vol. 179 B, pp. 417–449.

    Article  Google Scholar 

  • Dixon, H. (1923). Nerves of Plants. Nature, Vol. 112, pp. 799–800.

    Article  Google Scholar 

  • Ebbecke, U., undHecht, G. (1923). Über elektrisch gemessene Membranänderungen an Pflanzen und die Entstehung pflanzlicher Reizbewegungen. Pflüg. Arch., Bd. 199, S. 88.

    Article  Google Scholar 

  • Gildemeister, M. (1915). Der sogenannte psycho-galvanische Reflex und seine physikalisch-chemische Deutung. Pflüg. Arch., Bd. 162, S. 489–506.

    Article  Google Scholar 

  • Hermann, L. (1880). Untersuchungen über die Aktionsströme des Nerven. II. Pflüg. Arch., Bd. 24, S. 282–294.

    Google Scholar 

  • — (1884). Über sogenannte secundär-elektromotorische Erscheinungen an Muskeln und Nerven. Pflüg. Arch., Bd. 33, S. 161.

    Google Scholar 

  • Kunkel, A. J. (1881). Elektrische Untersuchungen an pflanzlichen und tierischen Gebilden. Pflüg. Arch., Bd. 25, S. 342.

    Article  Google Scholar 

  • Lewis andRandall (1923). Thermodynamics. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Lund, E. J. (1928). II. Theory of bioelectric currents. Jour. Exp. Zool., Vol. 51, pp. 265–290.

    Article  CAS  Google Scholar 

  • — (1929a). Electric polarity in the Douglas Fir. Pub. Puget Sound Biol. Sta., Vol. 7, pp. 1–28.

    Google Scholar 

  • — (1929b). The relative dominance of growing points in the Douglas Fir. Pub. Puget Sound Biol. Sta., Vol. 7, pp. 29–37.

    Google Scholar 

  • — andKenyon, W. A. (1927). I. Electric correlation potentials in growing root tips. Jour. Exp. Zool., Vol. 48, pp. 333–357.

    Article  CAS  Google Scholar 

  • Marsh, G. (1928). IV. The origin of electric polarity in the onion root. Jour. Exp. Zool., Vol. 51, pp. 309–325.

    Article  CAS  Google Scholar 

  • McClendon, J. F., andMedes, G. (1925). Physical chemistry in biology and medicine. W. B. Saunders Co., Philadelphia and London.

    Google Scholar 

  • Orbeli, L. A., undBrücke, E. Th. v. (1910). Die Aktionsströme der Uretermuskulatur während des Ablaufes spontaner Wellen. Pflüg. Arch., Bd. 133, S. 341–364.

    Article  Google Scholar 

  • Osterhout, W. J. V. (1922). Injury, recovery, and death in relation to conductivity and permeability. Lippincott, Philadelphia and London.

    Book  Google Scholar 

  • Stern, K (1924). Elektrophysiologie der Pflanzen. Julius Springer, Berlin.

    Book  Google Scholar 

  • Stiles, W. (1919). Irritability. Science Progress, Vol. XIII, p. 395.

    Google Scholar 

  • Waller, A. D. (1897). Phil. Trans, Vol. 188B, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The writer wishes to express his gratitude to Dr. E. J.Lund for his many helpful suggestions end criticisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, G. The effect of mechanical stimulation on the inherent E.M.F. of polar tissues. Protoplasma 11, 497–520 (1930). https://doi.org/10.1007/BF01614365

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01614365

Keywords

Navigation