Advertisement

Studia Geophysica et Geodaetica

, Volume 16, Issue 1, pp 10–29 | Cite as

Fundamental geodetic parameters of the earth's figure and the structure of the earth's gravity field derived from satellite data

  • Milan Burša
  • J. Pícha
Article

Summary

Using the geocentric constant GM=398 601.3 × 109m3s −2 , the known value of the angular velocity of the Earth's rotation ω, Stokes' constants J n (k) and S n (k) upto n=21 (zonal), n=16 (tesseral and sectorial) [2], the geocentric co-ordinates and heights above sea-level of SAO satellite stations [2], the following will be derived: the potential on the geoid Wo, the scale factor for lengths Ro=GM/Wo, the radius-vector of the surface W=Wo, the parameters of the best-fitting Earth tri-axial ellipsoid, and the components of the deflections of the vertical with respect to the geocentric rotational IAG ellipsoid (Lucerne 1967), as well as to the best-fitting geocentric tri-axial ellipsoid. Some of the differences in the structure of the gravity field over the Northern and Southern Hemispheres will be given, and the mean values of gravity over the equatorial zone, determined from the dynamics of satellite orbits, on the one hand, and from terrestrial gravity data, on the other, will be compared.

Keywords

Southern Hemisphere Satellite Data Structural Geology Gravity Field Gravity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    И. Д. Жонголович: Потенциал земного притяжения. Вулл. ИТА, VI (1957), 505.Google Scholar
  2. [2]
    E. M. Gaposchkin, K. Lambeck: 1969 Smithsonian Standard Earth (II). SAO Sp. Rep. 315, 1970.Google Scholar
  3. [3]
    K. Lambeck: Comparisons and Combinations of Geodetic Parameters Estimated from Dynamic and Geometric Satellite Solutions and from Mariner Flights. Dynamics of Satellites (1969). Symp. Prague COSPAR-IAU-IAG/IUGG-IUTAM. Springer-Vlg., Berlin—Heidelberg—New York 1970, 170.Google Scholar
  4. [4]
    K. Lambeck: Private Communication.Google Scholar
  5. [5]
    R. H. Rapp: Methods for the Computation of Geoid Undulations from Potential Coefficients. Rep. 132, The Ohio State Univ., April 1970.Google Scholar
  6. [6]
    W. M. Kaula: Tests and Combinations of Satellite Determinations of the Gravity Field with Gravimetry. JGR, 71 (1966), 5303.Google Scholar
  7. [7]
    G. Veis: The Determination of the Radius of the Earth and Other Geodetic Parameters as Derived from Optical Satellite Data. SAO Sp. Rep. 264; pres. XIV Gen. Ass. IUGG, Lucerne 1967.Google Scholar
  8. [8]
    A. H. Cook: Geodetic Constants and the Motion of the Moon. Bull. astr., XXV (1965), 33.Google Scholar
  9. [9]
    U. A. Uotila: Harmonic Analysis of World-wide Gravity Material. Isost. Inst. IAG Publ. 39, Helsinki 1962.Google Scholar
  10. [10]
    A. Bjerhammar: On a Coalescent World Geodetic System. ETL, Res. Inst. Geod. Sci., Alexandria 1967.Google Scholar
  11. [11]
    W. A. Heiskanen: Potentialities of Satellite Geodesy and Physical Geodesy. Proc. of the first Int. Symp., Use of Artificial Satellites for Geodesy, North-Holl. Publ. Co., Amsterdam 1963.Google Scholar
  12. [12]
    M. Burša: Potential of the Geoidal Surface, the Scale Factor for Lengths and Earth's Figure Parameters from Satellite Observations. Studia geoph. et geod., 13 (1969), 337.Google Scholar
  13. [13]
    M. Burša: Best-fitting Tri-axial Earth Ellipsoid Parameters Derived from Satellite Observations. Studia geoph. et geod., 14 (1970), 1.Google Scholar
  14. [14]
    M. Burša: Global Geoid Sections Determined by Satellite Orbit Dynamics. Studia geoph. et geod., 14 (1970), 274.Google Scholar
  15. [15]
    M. Burša: The Differences in Structure of the Gravity Field and the Figure of the Earth in the Northern and Southern Hemispheres. Studia geoph. et geod., 14 (1970), 363.Google Scholar
  16. [16]
    M. Burša: Comparison of Satellite and Terrestrial Gravity Data. Studia geoph. et geod., 15 (1971), 7.Google Scholar
  17. [17]
    M. Burša: Parameters of the Normal Gravity Field Deduced from Satellite Observations. Studia geoph. et geod., 15 (1971), 124.Google Scholar
  18. [18]
    M. Burša: Satellite Gravity Studies. Upper Mantle Project Programme in Czechoslovakia 1962–1970, Geophysics, Final Report, Academia, Praha 1971, 23.Google Scholar
  19. [19]
    M. Burša: On the Triaxiality of the Earth on the Basis of Satellite Data. Studia geoph. et geod., 15 (1971), 228.Google Scholar

Copyright information

© ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences 1972

Authors and Affiliations

  • Milan Burša
    • 1
    • 2
  • J. Pícha
  1. 1.Research Institute of GeodesyPrague
  2. 2.Dept. of Theoretical GeodesyPraha 1 — Malá Strana

Personalised recommendations