Changes in chemical composition and caloric content of developing eggs of the shrimpcrangon crangon

Änderungen in der chemischen Zusammensetzung und im Kaloriengehalt sich entwickelnder Eier der GarneleCrangon crangon


Pro Trockengewichtseinheit ergeben sich während der gesamten Eientwicklung vonCrangon crangon L. folgende relative Zunahmen: Wasser 16,8%, Asche 5,9%, Eiweiß 10,6%, Nicht-Eiweiß Stickstoff 0,5%. In gleichem Zeitraum sinken die entsprechenden Werte für den Fettgehalt von 32,6% auf 15,6% und für den Energiegehalt von 6443 auf 5287 cal/g organische Substanz. Für die Entwicklung der aus dem Ei geschlüpften Protozoea beträgt der Kumulativ-Nutzeffekt 70,3% für Trockengewicht, 54,0% für Energie, 83,0% für Eiweiß und 33,6% für Fett. Während der ganzen Entwicklung eines Eies werden im Mittel 0,0453 cal für den Stoffwechsel aufgewendet; davon stammen 20,8% aus dem Eiweiß und 75,0% aus der Fettoxydation. Im Verlauf der Eientwicklung werden offensichtlich beträchtliche Mengen anorganischer Salze (0,29µg pro Ei) aus dem umgebenden Meerwasser absorbiert.


1. Changes in chemical composition and caloric content as well as the cumulative efficiencies of yolk utilization have been studied in the developing eggs and freshly hatched protozoea of the shrimpCrangon crangon L.

2. Per unit dry weight of the fresh egg the following relative increases were observed during the development: 16.8% water, 5.9% ash, 10.6% protein, and 0.5% non-protein nitrogen. During the same period (fresh egg to freshly hatched protozoea) fat content decreased from 32.6% to 15.6% and energy content from 6443 to 5287 cal/g dry organic substance.

3. The cumulative efficiencies of yolk utilization for the different constituents varied; they were 70.3% for dry weight, 54.0% for total energy, 83.0% for protein, and 33.6% for fat.

4. Of the 0.0453 cal expended on the metabolic processes of the embryo, only 20.8% was drawn from the oxidation of protein, while fat oxidation contributed as much as 75.0%.

5. Considerable quantities of inorganic salts (0.29µg/egg) were absorbed from the surrounding sea-water by the egg during its development.

Literature cited

  1. Baldwin, E., 1964. An introduction to comparative biochemistry. 4th ed. Univ. Press, Cambridge, 179 pp.

    Google Scholar 

  2. Barnes, H. &Barnes, M., 1965. Egg size, nauplius size, and their variation with local, geographical and specific factors in some cirripedes.J. Anim. Ecol. 34, 391–402.

    Article  Google Scholar 

  3. Blaxter, J. H. S. &Hempel, G., 1966. Utilization of yolk by herring larvae.J. mar. biol. Ass. U. K. 46, 219–234.

    Article  Google Scholar 

  4. Comita, G. W. &Schindler, D. W., 1963. Caloric values of microcrustacea.Science, N. Y. 140, 1394–1396.

    CAS  Article  Google Scholar 

  5. Faustov, V. S. &Zotin, A. I., 1964. Changes in the heat combustion of the eggs of fishes and amphibians during development.Dokl. Akad. Nauk SSSR. 162, 965–968.

    Google Scholar 

  6. Flüchter, J. &Pandian, T. J., 1967. Rate and efficiency of yolk utilization by developing eggs of the soleSolea solea. (Unpubl.)

  7. Giese, A. C., Greenfield, L., Huang, H., Farmanfarmaian, A., Boolootian, R. &Lasker, R., 1959. Organic productivity in the reproductive cycle of the purple sea urchin.Biol. Bull. mar. biol. Lab., Woods Hole 116, 49–58.

    Article  Google Scholar 

  8. Goodwin, T. W., 1960. Biochemistry of pigments.In: The physiology of crustacea. Ed. byT. H. Waterman. Academic Press, New York, Vol.1, 101–140.

    Google Scholar 

  9. Gray, J., 1928. The growth of fish. 2. The growth rate of the embryo ofSalmo fario.J. exp. Biol. 6, 110–124.

    Google Scholar 

  10. Ivlev, V. S., 1939. Energy balance of the growing larva ofSiluris glanis.Dokl. Akad. Nauk SSSR. 25, 87–89.

    Google Scholar 

  11. Kinne, O. &Kinne, E. M., 1962. Rates of development in embryos of a cryprinodont fish exposed to different temperature-salinity-oxygen combinations.Can. J. Zool. 40, 231–253.

    CAS  Article  Google Scholar 

  12. Lasker, R., 1962. Efficiency and rate of yolk utilization by developing embryos and larvae of the Pacific sardineSardinops caerulea (Giard).J. Fish. Res. Ba. Can. 19, 867–875.

    Article  Google Scholar 

  13. Lloyd, A. J. &Yonge, C. M., 1947. The biology ofCrangon vulgaris L. in the Bristol channel and Severn estuary.J. mar. biol. Ass. U. K. 26, 626–661.

    CAS  Article  Google Scholar 

  14. Needham, J., 1931. Chemical embryology. Univ. Press, Cambridge, Vol.2 (4).

    Google Scholar 

  15. —— 1950. Biochemistry and morphogenesis. Univ. Press, Cambridge, 785 pp.

    Google Scholar 

  16. —— &Needham, D. M., 1930. On phosphorus metabolism of embryonic life. 1. Invertebrate eggs.J. exp. Biol. 7, 317–348.

    CAS  Google Scholar 

  17. Paffenhöfer, G.-A., 1967. Caloric content of larvae of the brine shrimpArtemia salina.Helgoländer wiss. Meeresunters. 16, 130–135.

    Article  Google Scholar 

  18. Paine, R. T., 1964. Ash and calorie determinations of sponge and opisthobranchs tissues.Ecology 45, 384–387.

    Article  Google Scholar 

  19. Pandian, T. J., 1967a. Intake, digestion, absorption and conversion of food in the fishesMegalops cyprinoides andOphiocephalus striatus.Mar. Biol. 1, 16–32.

    Article  Google Scholar 

  20. -- 1967b. Changes in chemical composition and caloric content of developing eggs ofLigia oceanica. (Unpubl.)

  21. -- 1967c. Chemical composition and caloric content of developing eggs of the lobsterHomarus gammarus. (Unpubl.)

  22. -- 1967c. Changes in chemical composition and caloric content of developing eggs of the brine shrimpArtemia salina. (Unpubl.)

  23. —— &Schumann, K. H., 1967. Chemical composition and caloric content of egg and zoea of the hermit crabEupagurus bernhardus.Helgoländer wiss. Meeresunters. 16, 225–230.

    Article  Google Scholar 

  24. Pregl, F. &Roth, H., 1958. Quantitative organische Mikronanalyse. 7. Aufl. von H. Roth. Springer, Wien, 361 pp.

    Google Scholar 

  25. Ramult, M., 1930. Untersuchungen über die Cladoceren-Fauna des polnischen Ostseeküsten-Landes.Bull. int. Acad. pol. Sci. Lett. (Cl. Sci. math. nat.) 2, 311 ff.

  26. Richards, A. G., 1951. The integument of arthropods: the chemical components and their properties, the anatomy and development and the permeability. Univ. of Minnesota Press, Minneapolis, Minn., 411 pp.

    Google Scholar 

  27. Slobodkin, L. B. &Richman, S., 1961. Calories/gm in species of animals.Nature, Lond. 191 (4785), 299.

    Article  Google Scholar 

  28. Smith, S., 1957. Early development and hatching.In: The physiology of fishes. Ed. by M. E. Brown. Academic Press, New York, Vol.1, 323–359.

    Google Scholar 

  29. Vinogradov, A. P., 1953. The elementary composition of marine organisms. Transl. from Russian. Yal Univ. Press, New Haven, Conn. 647 pp.(Mem. Sears Found. mar. Res. 2 ).

    Google Scholar 

  30. Waterman, T. H. (Ed.), 1960. The physiology of crustacea. Academic Press, New York, Vol.1, 1–670.

    Google Scholar 

Download references

Author information



Additional information

Dedicated to Prof.R. V. Seshaiya, the founder of the Marine Biological Laboratory, Porto Nova, South India, on his 70th birthday.

This paper is based on a lecture presented during the Annual meeting of the “International Council for the Exploration of the Sea” in Hamburg, October, 1967.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandian, T.J. Changes in chemical composition and caloric content of developing eggs of the shrimpcrangon crangon . Helgolander Wiss. Meeresunters 16, 216–224 (1967).

Download citation


  • Caloric Content
  • Main Energy Source
  • Yolk Utilization
  • Shrimp Crangon Crangon
  • Sand Crab