Abstract
For classicalN-particle systems with pair interactionN −1 \(\mathop \Sigma \limits_{1 \leqq i \leqq j \leqq N} \) ø(q i−q i) the Vlasov dynamics is shown to be thew*-limit asN→∞. Propagation of molecular chaos holds in this limit, and the fluctuations of intensive observables converge to a Gaussian stochastic process.
Similar content being viewed by others
References
Vlasov, A.A.: J.E.T.P.8, 291 (1938)
Kac, M.: Proc. 3rd Berkeley Symp. Math. Stat. Prob.3, 171 (1955)
McKean, H.P.: Comm. Pure Appl. Math.28, 435 (1975)
Grünbaum, F.A.: Arch. Rat. Mech. Anal.42, 323 (1971)
Grad, H.: In: Handbuch der Physik, Vol. XII. Berlin-Göttingen-Heidelberg: Springer 1958
Lanford, O.E., III: In: Dynamical systems, theory and applications (ed. J. Moser). Berlin-Heidelberg-New York: Springer 1975
King, F.: Thesis, Univ. of California, Berkeley (1976)
Hepp, K., Lieb, E.H.: Helv. Phys. Acta46, 573 (1973)
Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear algebra. New York: Academic Press 1974
Dudley, R.M.: Studia Math.27, 251 (1966)
Billingsley, P.: Convergence of probability measures. New York: Wiley 1968
Hewitt, E., Savage, L.: Trans. Amer. Math. Soc.80, 470 (1955)
Hepp, K.: Commun. math. Phys.35, 265 (1974)
Battle, G.: Dynamics and phase transitions for a continuous system of quantum particles in a box. Preprint
Author information
Authors and Affiliations
Additional information
Communicated by J. L. Lebowitz
Rights and permissions
About this article
Cite this article
Braun, W., Hepp, K. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun.Math. Phys. 56, 101–113 (1977). https://doi.org/10.1007/BF01611497
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01611497