Advertisement

Investigations on the relationships between algal blooms and bacterial populations in the Schlei Fjord (western Baltic Sea)

  • M. Rieper
Article

Summary

1. Investigations were carried out on monthly voyages to the Schlei, a fjord of the western Baltic Sea, from 1972 to 1974.

2. The Schlei is characterized by two successive water blooms — one in the spring caused byChlorella sp., and a Cyanophyceae bloom in late summer withMicrocystis aeruginosa as the dominant species.

3. The blooms are accompanied by different bacteria populations. It was noted, e. g., that the proportion of red pigmented bacteria is greatest during the spring, whereas in late summer the numbers of pigmented bacteria decrease and white or colorless forms dominate.

4. In order to determine the relationship of the bacteria to the phytoplankton blooms, the predominant algae and bacteria species in the Schlei were isolated, and laboratory experiments with these microorganisms were carried out.

5. The results of these experiments showed that the growth of the red bacteria was clearly enhanced when cultivated together withChlorella sp.

6. The enhancement takes place immediately with actively growingChlorella cultures. Apparently these algae secrete organic substances into the culture medium during their exponential phase of growth, which are utilized by the red bacteria. It is likely that a similar process occurs in the Schlei. The rapid increase in red bacteria has been shown to take place parallel to the development of theChlorella water bloom in the spring. The proportion of pigmented bacteria decreases in the late summer with the breakdown of theChlorella bloom, and a new bacterial population becomes dominant.

7. Other experiments withChlorella sp. showed thatEscherichia coli is strongly inhibited by the presence of these algae. The inhibition takes place only afterChlorella has reached the end of the exponential phase of growth, however. The inhibitory substances are probably autolysis or degradation products which accumulate in the culture medium during the stationary phase of algal growth.

8. None of the bacteria tested had any influence on the growth rate ofChlorella sp., nor were the algae cells colonized by bacteria at any time.

9. With the development of theMicrocystis bloom in late summer, white or colorless bacteria are more frequently found in the waters of the Schlei. At the same time, there is generally a decrease in the saprophyte counts including pigmented bacteria.

10. Two strains of white bacteria commonly associated withMicrocystis were able to suppress the growth of many other bacteria on agar plates, especially red, yellow and brown pigmented species.

11. Sterile filtrates prepared from the culture solutions of the white bacteria had no effect on the strains tested, however. The suppression on agar plates is therefore more likely due to competition for nutrients. There is no evidence that antibiotic substances are involved.

12. Filtrates prepared from non-axenic cultures ofMicrocystis aeruginosa during the exponential as well as stationary phase of growth also did not inhibit the growth of the bacteria tested.

13. The decrease in the numbers of saprophytic bacteria in the Schlei during the summer may be due in part to the presence of the large white colonies on agar plates which prevent other bacteria from developing. These white bacteria are apparently associated withMicrocystis water blooms; possibly a symbiotic or mutualistic relationship exists between these microorganisms.

Keywords

Phytoplankton Late Summer Microcystis Aeruginosa Flavobacterium Water Bloom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Untersuchungen über die Beziehungen zwischen Algenblüten und Bakterienpopulationen in der Schlei (westliche Ostsee)

Kurzfassung

Die Wechselbeziehungen zwischen Algenblüten und Bakterien wurden in der Schlei, einer Förde der westlichen Ostsee, untersucht. Die Wasserblüten, im Frühjahr vonChlorella spec. und im Spätsommer vonMicrocystis aeruginosa gebildet, werden von Änderungen in den Bakterienpopulationen begleitet. Laborversuche wurden durchgeführt mit den hauptblütenbildenden Algenarten und den dominanten Bakterienarten. Die Ergebnisse zeigen, daß das Wachstum von einigen rotpigmentierten Bakterien(Flavobacterium), die die Wasserblüte vonChlorella begleiten, durch Stoffe, die von den Algen in der logarithmischen Wachstumsphase in das Medium abgegeben werden, gefördert wird.Microcystis aeruginosa wird von mindestens zwei chitinabbauenden Bakterienarten (darunterPseudomonas spec.) begleitet. Die ökologischen Zusammenhänge werden diskutiert.

Literature cited

  1. Ahrens, R., 1969. Ökologische Untersuchungen an sternbildenden Agrobacterium-Arten aus der Ostsee. Kieler Meeresforsch.25, 190–204.Google Scholar
  2. Allen, M. M., 1968. Simple conditions for growth of unicellular blue-green algae on plates. J. Phycol.4, 1–4.Google Scholar
  3. Bell, W. &Mitchell, R., 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. mar. biol. Lab., Woods Hole143, 265–277.Google Scholar
  4. —— &Mitchell, R., 1974. Selective stimulation of marine bacteria by algal extracellular products. Limnol. Oceanogr.19, 833–839.Google Scholar
  5. Berland, B. R., Bonin, D. J. &Maestrini, S. Y., 1970. Study of bacteria associated with marine algae in culture. III. Organic substrates supporting growth. Mar. Biol.5, 68–76.Google Scholar
  6. Burkholder, P. R., Burkholder, L. M. &Almodóvar, L. R., 1960. Antibiotic activity of some marine algae of Puerto Rico. Botanica mar.2, 149–156.Google Scholar
  7. Fogg, G. E., 1952. The production of extracellular nitrogenous substances by a blue-green alga. Proc. R. Soc. (B)139, 372–397.Google Scholar
  8. —— &Nalewajko, C., 1964. Glycollic acid as an extracellular product of phytoplankton. Verh. int. Verein. theor. angew. Limnol.15, 806–810.Google Scholar
  9. —— &Westlake, D. F., 1953. The importance of extracellular products of algae in freshwater. Verh. int. Verein. theor. angew. Limnol.12, 219–232.Google Scholar
  10. Gray, E. A., 1953. The microbiology of a polluted stream. Verh. int. Verein. theor. angew. Limnol.12, 814–817.Google Scholar
  11. Gunkel, W., 1968. Die Bakterien und ihre Beziehungen zum Plankton in den Tümpeln der Helgoländer Düne nach der schweren Sturmflut im Februar 1962. Mitt. int. Verein. theor. angew. Limnol.14, 31–42.Google Scholar
  12. Jones, J. G., 1972. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. J. Ecol.60, 59–75.Google Scholar
  13. Koch, W., 1965. Cyanophyceen Kulturen. Anreicherungs- und Isolierverfahren. Zbl. Bakt. Parasitkde (Abt. 1) Suppl.1, 415–431.Google Scholar
  14. König, D., 1970. Landschaftlich-ökologische Fakten und Abwasserbelastung. Kieler Meeresforsch.26, 111–119.Google Scholar
  15. Lange, W., 1971. Enhancement of algal growth in Cyanophyta-bacteria systems by carbonaceous compounds. Can. J. Microbiol.17, 303–314.Google Scholar
  16. Meffert, M.-E., 1973. Einfluß von pH, CO2-Konzentration und Bakterien auf das Wachstum der BlaualgeOscillatoria redekei van Goor. Arch. Hydrobiol.72, 186–201.Google Scholar
  17. Moikeha, S. N. &Chu, G. W., 1971. Dermatitis-producing algaLyngbya majuscula Gomont in Hawaii. II. Biological properties of the toxic factor. J. Phycol.7, 8–13.Google Scholar
  18. Nellen, W. &Rheinheimer, G., 1970. Einleitung und Literaturzusammenstellung früherer Arbeiten über die Schlei. Kieler Meeresforsch.26, 105–109.Google Scholar
  19. Niewolak, S., 1971a. The influence of living and dead cells ofChlorella vulgaris andScenedesmus obliquus on aquatic microorganisms. Polskie Arch. Hydrobiol.18 (1), 43–54.Google Scholar
  20. —— 1971b. The influence of alcohol extracts of some algae (Chlorella andScenedesmus) on aquatic microorganisms. Polskie Arch. Hydrobiol.18 (2), 31–42.Google Scholar
  21. Overbeck, J., 1968. Prinzipielles zum Vorkommen der Bakterien im See. Mitt. int. Verein. theor. angew. Limnol.14, 134–144.Google Scholar
  22. -- 1972. Distribution pattern of phytoplankton and bacteria, microbial decomposition of organic matter and bacterial production in eutrophic, stratified lake. In: Productivity problems of freshwaters (IBP-Unesco-Symposium). Ed. byZ. Kayak &A. Hillbricht-Ilkowska. Warszawa, 227–237.Google Scholar
  23. Pratt, R., Daniels, T. C., Eiler, J. J., Gunnison, J. B., Kumler, W. D., Oneto, J. F., Strait, L. A., Spoehr, H. A., Hardin, G. J., Milner, H. W., Smith J. H. C. &Strain, H. H., 1944. Chlorellin, an antibacterial substance fromChlorella. Science, N. Y.99, 351–352.Google Scholar
  24. Rheinheimer, G., 1970a. Sauerstoffhaushalt. Kieler Meeresforsch.26, 126–128.Google Scholar
  25. —— 1970b. Ammoniak-, Nitrit-, Nitrat- und Phosphatgehalt. Kieler Meeresforsch.26, 130–132.Google Scholar
  26. —— 1970c. Bakterienverteilung. Kieler Meeresforsch.26, 150–156.Google Scholar
  27. —— 1970d. Colizahlen. Kieler Meeresforsch.26, 156–159.Google Scholar
  28. —— 1970e. Einfluß verschiedener Faktoren auf die Bakterienflora. Kieler Meeresforsch.26, 161–168.Google Scholar
  29. —— 1970f. Hefen. Kieler Meeresforsch.26, 179.Google Scholar
  30. —— 1971. Mikrobiologie der Gewässer. Fischer, Jena, 184 pp.Google Scholar
  31. Rieper, M., 1975. Investigations on the relationships between algal blooms and bacterial populations in the Schlei Fjord (western Baltic Sea). Diss., Kiel, 110 pp.Google Scholar
  32. Rodina, A. G., 1972. Methods in aquatic microbiology. Univ. Park Press, Baltimore, 461 pp.Google Scholar
  33. Roos, H., 1957. Untersuchungen über das Vorkommen antimikrobieller Substanzen in Meeresalgen. Kieler Meeresforsch.13, 41–58.Google Scholar
  34. Schiemann, S., 1974. Die Primärproduktion des Phytolanktons der Schlei und des Windebyer Noors im Jahre 1972. Ein Vergleich von Methoden und Biotopen. Diss., Kiel, 173 pp.Google Scholar
  35. Schmidt, G. W., 1969. Vertical distribution of bacteria and algae in a tropical lake. Int. Revue ges. Hydrobiol.54, 791–797.Google Scholar
  36. —— 1970. Numbers of bacteria and algae and their interrelations in some Amazonian waters. Amazoniana2, 393–400.Google Scholar
  37. Sieburth, J. McN., 1964. Antibacterial substances produced by marine algae. Devs ind. Microbiol.5, 124–134.Google Scholar
  38. —— 1968. The influence of algal antibiosis on the ecology of marine microorganisms. In: Adv. Microbiol. Sea1, 63–94.Google Scholar
  39. —— &Pratt, D. M., 1962. Anticoliform activity of sea water associated with the termination ofSkeletonema costatum blooms. Trans. N. Y. Acad. Sci. (Ser. 2)24, 498–501.Google Scholar
  40. Staub, R., 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen BlaualgeOscillatoria rubescens DC. Schweiz. Z. Hydrol.23, 82–198.Google Scholar
  41. Vela, G. R., &Guerra, C. N., 1966. On the nature of mixed cultures ofChlorella pyrenoidosa TX 71105 and various bacteria. J. gen. Microbiol.42, 123–131.Google Scholar
  42. Watanabe, A., 1951. Production in cultural solution of some amino acids by the atmospheric nitrogen-fixing blue-green algae. Archs. Biochem. Biophys.34, 50–55.Google Scholar
  43. Whitton, B. A., 1965. Extracellular products of blue-green algae. J. gen. Microbiol.40, 1–11.Google Scholar
  44. —— 1973. Interactions with other organisms. In: The biology of blue-green algae. Ed. byN. G. Carr &B. A. Whitton. Blackwell, Oxford, 676 pp.Google Scholar
  45. Wolk, C. P., 1973. Physiology and cytological chemistry of blue-green algae. Bact. Rev.37, 32–101.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1976

Authors and Affiliations

  • M. Rieper
    • 1
    • 2
  1. 1.Institut für MeereskundeKielGermany
  2. 2.Biologische Anstalt Helgoland (Meeresstation)HelgolandGermany

Personalised recommendations