Zeitschrift für Ernährungswissenschaft

, Volume 33, Issue 1, pp 44–50 | Cite as

Mechanism of hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats: reduction of cholesterol absorption and increase of plasma cholesterol removal

  • P. Bobek
  • L. Ozdin
  • L. Kuniak
Originalbeiträge

Summary

The content of cholesterol in the serum and liver of male Wistar rats fed, for the period of 8 weeks shortly after weaning, a diet containing 0.3% of cholesterol was reduced by 33 and 27% by the addition of 5% of dried oyster mushroom powder. Although the level of serum triacylglycerols was not affected by oyster mushroom, their content in liver of rats on mushroom diet was reduced by 41%. Very-low-density lipoproteins and low-density lipoproteins participated by 55 and 38%, respectively, in the total reduction of serum cholesterol. Cholesterol content in high-density lipoproteins was not significantly affected by oyster mushroom. Cholesterol absorption as determined by dual-isotope plasma ratio method was significantly reduced by 14% with oyster mushroom diet. Similarly, this diet increased by 42% the fractional catabolic rate of cholesterol determined by the analysis of decay curve of [4−14C]cholesterol.

Key words

Oyster mushroom cholesterol absorption catabolism 

Abbreviations

VLDL

ver- low-density lipoprotein

LDL

low-density lipoprotein

HDL

high-density lipoprotein

FCR

fractional catabolic rate

Mechanismus des Hypocholesteroleffektes des Austernpilzes (Pleurotus ostreatus) bei Ratten: Verminderte Cholesterolabsorption und erhöhte Entfernung von Cholesterol aus dem Plasma

Zusammenfassung

Acht Wochen nach der Absetzung männlicher Ratten (Stamm Wistar) wurden die Tiere mit zwei Diätvarianten gefüttert: Die erste erhielt eine Zugabe von 0,3% Cholesterol, die zweite zusätzlich noch 5% von getrocknetem und gemahlenem Austernpilz. Die Zugabe von Austernpilz zur Cholesteroldiät verursachte eine Herabsetzung des Serumcholesterolspiegels um 33% und des Cholesterolgehaltes in der Leber um 27%. Der Gehalt an Serumtriazylglyzerolen wurde durch die Pilzzugabe zur Diät nicht beeinflußt, aber deren Gehalt in der Leber wurde um 41% verringert. An der Herabsetzung des Serumcholesterolspiegels waren die Lipoproteine von sehr niedriger Dichte mit 55% und die Lipoproteine von niedriger Dichte mit 38% beteiligt. Der Cholesterolgehalt in Lipoproteinen hoher Dichte wurde durch den Austernpilz nicht signifikant beeinflußt. Die Austernpilzzugabe zur Diät setzte die Cholesterolabsorption signifikant um 14% herab, was mittels der Verhältnismethode der Dualisotopenplasma-Methode bestimmt wurde. Die Austernpilze enthaltende Diät beschleunigte um 37% den Fraktionsveränderungsgrad des Cholesterols, was mittels der Zerfallskurvenanalyse von 4−14C-Cholesterol bestimmt wurde.

Schlüsselwörter

Austernpilz Cholesterol Absorption Katabolismus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abell LL, Levy BB, Brodie BB, Kendal FM (1952) A simplified method for the estimation of total cholesterol in serum and demonstration of its specifity. J Biol Chem 195:357–364Google Scholar
  2. 2.
    Bobek P, Ginter E, Kuniak L, Babala J, Jurčovičová M, Ozdin L, Červeň J (1991) Effect of mushroom Pleurotus ostreatus and isolated fungal polysaccharide on serum and liver in syrian hamsters with hyperlipoproteinemia. Nutrition 7:105–108Google Scholar
  3. 3.
    Bobek P, Ginter E, Jurčovičová M, Ozdin L, Mekiňová D (1991) Effect of oyster fungus (Pleurotus ostreatus) on serum and liver lipids of syrian hamsters with a chronic alcohol intake. Physiol Res 40:327–332Google Scholar
  4. 4.
    Bobek P, Chorváthová V, Ginter E (1991) Hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rat with streptozotocine diabetes. Biológia 46:1025–1030Google Scholar
  5. 5.
    Bobek P, Ginter E, Jurčovičová M, Kuniak L (1991) Cholesterol-lowering effect of the mushroom Pleurotus ostreatus in hereditary hypercholesterolemic rats. Ann Nutr Metab 35:191–195Google Scholar
  6. 6.
    Bobek P, Kuniak L, Ozdin L (1993) Study on the mechanism of hypolipemic effect of oyster mushroom (Pleurotus ostreatus) extracts in syrian hamster. Biológia 48:305–308Google Scholar
  7. 7.
    Bobek P, Kuniak L, Ozdin L (1993) The mushroom Pleurotus ostreatus reduces secretion and accelerates the fractional turnover rate of very-low-density lipoproteins in the rat. Ann Nutr Metab 37:142–145Google Scholar
  8. 8.
    Bobek P, Ginter E, Ozdin L (1993) Oyster mushroom (Pleurotus ostreatus) accelerates the plasma clearance of low-density and high-density lipoproteins in rats. Nutr Res 13:885–890Google Scholar
  9. 9.
    Bobek P, Ozdin L, Kuniak L (1993) Influence of water and ethanol extracts of the oyster mushroom (Pleurotus ostreatus) on serum and liver lipids of the syrian hamster. Die Nahrung-Food 37:571–575Google Scholar
  10. 10.
    Chorváthová V, Bobek P, Ginter E, Klvanová J (1993) Effect of the oyster fungus on glycemia and cholesterolaemia in rats with insulin dependent diabetes. Physiol Res 42:175–179Google Scholar
  11. 11.
    Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  12. 12.
    Gregg RC, Diamond A, Mondon CE, Reaven GM (1977) The effects of chronic uremia and dexamethasone on triglyceride kinetics in the rat. Metabolism 26:875–882Google Scholar
  13. 13.
    Havel RJ, Eder HA, Bragdon JH (1955) The distribution of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1355Google Scholar
  14. 14.
    Havel RJ (1988) Lowering cholesterol. Rationale, mechanism, and means. J Clin Invest 81:1653–1660Google Scholar
  15. 15.
    Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL (1988) Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res 29:1573–1582Google Scholar
  16. 16.
    Iwai H (1974) Inhibition of protein kinase and cyclic AMP phosphodiesterase by eritadenine isoamyl ester. J Biochem 76:419–429Google Scholar
  17. 17.
    Stamler J, Wethwoth D, Neaton JD (1986) Is there a relationship between serum cholesterol and risk of premature death from coronary heart disease and grade? J Am Med Assoc 256:2823–2829Google Scholar
  18. 18.
    Story JA (1985) Dietary fiber and lipid metabolism. Proc Soc Exp Biol Med 180:447–452Google Scholar
  19. 19.
    Sugano M, Fujikawa T, Hiratsuji Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Amer J Clin Nutr 33:787–793Google Scholar
  20. 20.
    Sugano M, Yamada Y, Yoshima K, Hasimoto Y, Kymoto M (1988) The hypocholesterolemic action of the undigested fraction of soybean protein in rats. Atherosclerosis 72:115–122Google Scholar
  21. 21.
    Takashima K, Sato C, Sasaki Y (1974) Effect of eritadenine on cholesterol metabolism in rat. Biochem Pharmacol 23:433–438Google Scholar
  22. 22.
    Vahouny GV, Tombes R, Cassidy MM, Kritchevsky D, Gallo LL (1980) Dietary fibers. V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrans and dietary fibers. Lipids 15:1012–1018Google Scholar
  23. 23.
    Vance JE, Vance DE (1990) The assembly of lipids into lipoproteins during secretion. Experientia 46:560–569Google Scholar
  24. 24.
    Yamashita S, Yamashita K, Yasuda H (1980) High-fiber diet in the control of diabetes in rats. Endocrinol Jap 27:169–173Google Scholar
  25. 25.
    Zemek J, Kučár Š, Anderle D (1987) The enzyme partial deacetylation of 1,6-anhydro-2,3,4-tri-O-acetyl-beta-D-glucopyranose. Coll Czechoslovak Chem Commun 52:2347–2352Google Scholar
  26. 26.
    Zilversmit DB, Hughes LB (1974) Validation of a dual-isotope plasma ratio method for measurement of cholesterol absorption in rats. J Lipid Res 15:465–473Google Scholar
  27. 27.
    Zlatkis A, Zak B, Boyle AJ (1953) New method for direct determination of serum cholesterol. J Lab Clin Med 41:486–492Google Scholar

Copyright information

© Steinkopff-Verlag 1994

Authors and Affiliations

  • P. Bobek
    • 1
  • L. Ozdin
    • 1
  • L. Kuniak
    • 2
    • 1
  1. 1.Research Institute of NutritionBratislava
  2. 2.Faculty of Chemical TechnologySlovak Technical UniversityBratislava

Personalised recommendations