Abstract
The nonlinear Boltzmann equation for a rarefied gas is investigated in the fluid dynamical limit to the level of compressible Euler equation locally in time, as the mean free path ε tends to zero. The nonlinear hyperbolic conservation laws obtained as the limit are also the first approximation of the Chapman-Enskog expansion.
Similar content being viewed by others
References
Chapman, S., Cowling, T.: The mathematical theory of non-uniform gases, 3rd ed. London: Cambridge University Press 1970
Ellis, R., Pinsky, M.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl.54, 125–156 (1975)
Ellis, R., Pinsky, M.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures Appl.54, 157–181 (1975)
Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol. 12. Berlin-Göttingen-Heidelberg: Springer 1958
Grad, H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids6, 147–181 (1963)
Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied gas dynamics, Vol. 1 (ed. J. Laurmann), pp. 26–59. New York: Academic Press 1963
Grad, H.: Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equations. Proc. Symp. Appl. Math., Am. Math. Soc.17, 154–183 (1965)
Grad, H.: On Boltzmann's H-theorem. J. Soc. Industr. Appl. Math.13, 259–277 (1965)
Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete velocity gas. Appl. Math. Optimiz. (Intern. J.)3, 24–49 (1977)
McLennan, J.: Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation. Phys. Fluids8, 1580–1584 (1965)
Nalimov, V.: A priori estimates of solutions of elliptic equations in the class of analytic functions and their applications to the Cauchy-Poisson problem. Dokl. Akad. Nauk SSSR189 (1969); English translation: Sov. Math. Dokl.10, 1350–1354 (1969)
Nirenberg, L.: An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry6, 561–576 (1972)
Nishida, T.: On the Nirenberg's abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry (to appear)
Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci., Kyoto Univ.12, 229–239 (1976)
Ovsjannikov, L.: A nonlinear Cauchy problem in a scale of Banach spaces. Dokl. Akad. Nauk SSSR200 (1971); English translation: Sov. Math. Dokl.12, 1497–1502 (1971)
Pinsky, M.: On the Navier-Stokes approximation to the linearized Boltzmann equation. J. Math. Pures Appl.55, 217–231 (1976)
Shizuta, Y.: The existence and approach to equilibrium of classical solutions of the Boltzmann equation. Commun. math. Phys. (to appear)
Ukai, S.: On the existence of global solutions of mixed problem for nonlinear Boltzmann equation. Proc. Japan Acad.50, 179–184 (1974)
Ukai, S.: Les solutions globales de l'équation nonlinéaire de Boltzmann dans l'espace tout entier et dans le demi-espace. Compte Rendu Acad. Sci. Paris282, 317–320 (1976)
Ukai, S., Nishida, T.: On the Boltzmann equation (Proc. Coll. Franco-Japan
Author information
Authors and Affiliations
Additional information
Communicated by J. Glimm
Rights and permissions
About this article
Cite this article
Nishida, T. Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun.Math. Phys. 61, 119–148 (1978). https://doi.org/10.1007/BF01609490
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01609490