Skip to main content
Log in

Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The nonlinear Boltzmann equation for a rarefied gas is investigated in the fluid dynamical limit to the level of compressible Euler equation locally in time, as the mean free path ε tends to zero. The nonlinear hyperbolic conservation laws obtained as the limit are also the first approximation of the Chapman-Enskog expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, S., Cowling, T.: The mathematical theory of non-uniform gases, 3rd ed. London: Cambridge University Press 1970

    Google Scholar 

  2. Ellis, R., Pinsky, M.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl.54, 125–156 (1975)

    Google Scholar 

  3. Ellis, R., Pinsky, M.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures Appl.54, 157–181 (1975)

    Google Scholar 

  4. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol. 12. Berlin-Göttingen-Heidelberg: Springer 1958

    Google Scholar 

  5. Grad, H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids6, 147–181 (1963)

    Google Scholar 

  6. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied gas dynamics, Vol. 1 (ed. J. Laurmann), pp. 26–59. New York: Academic Press 1963

    Google Scholar 

  7. Grad, H.: Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equations. Proc. Symp. Appl. Math., Am. Math. Soc.17, 154–183 (1965)

    Google Scholar 

  8. Grad, H.: On Boltzmann's H-theorem. J. Soc. Industr. Appl. Math.13, 259–277 (1965)

    Google Scholar 

  9. Inoue, K., Nishida, T.: On the Broadwell model of the Boltzmann equation for a simple discrete velocity gas. Appl. Math. Optimiz. (Intern. J.)3, 24–49 (1977)

    Google Scholar 

  10. McLennan, J.: Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation. Phys. Fluids8, 1580–1584 (1965)

    Google Scholar 

  11. Nalimov, V.: A priori estimates of solutions of elliptic equations in the class of analytic functions and their applications to the Cauchy-Poisson problem. Dokl. Akad. Nauk SSSR189 (1969); English translation: Sov. Math. Dokl.10, 1350–1354 (1969)

  12. Nirenberg, L.: An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry6, 561–576 (1972)

    Google Scholar 

  13. Nishida, T.: On the Nirenberg's abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geometry (to appear)

  14. Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci., Kyoto Univ.12, 229–239 (1976)

    Google Scholar 

  15. Ovsjannikov, L.: A nonlinear Cauchy problem in a scale of Banach spaces. Dokl. Akad. Nauk SSSR200 (1971); English translation: Sov. Math. Dokl.12, 1497–1502 (1971)

    Google Scholar 

  16. Pinsky, M.: On the Navier-Stokes approximation to the linearized Boltzmann equation. J. Math. Pures Appl.55, 217–231 (1976)

    Google Scholar 

  17. Shizuta, Y.: The existence and approach to equilibrium of classical solutions of the Boltzmann equation. Commun. math. Phys. (to appear)

  18. Ukai, S.: On the existence of global solutions of mixed problem for nonlinear Boltzmann equation. Proc. Japan Acad.50, 179–184 (1974)

    Google Scholar 

  19. Ukai, S.: Les solutions globales de l'équation nonlinéaire de Boltzmann dans l'espace tout entier et dans le demi-espace. Compte Rendu Acad. Sci. Paris282, 317–320 (1976)

    Google Scholar 

  20. Ukai, S., Nishida, T.: On the Boltzmann equation (Proc. Coll. Franco-Japan

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Glimm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, T. Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun.Math. Phys. 61, 119–148 (1978). https://doi.org/10.1007/BF01609490

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609490

Keywords

Navigation