Skip to main content
Log in

Linear response theory and the KMS condition

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The response, relaxation and correlation functions are defined for any vector state ε of a von Neumann algebra\(\mathfrak{M}\), acting on a Hilbert space ℋ, satisfying the KMS-condition. An operator representation of these functions is given on a particular Hilbert space

.

With this technique we prove the existence of the static admittance and the relaxation function. Finally we generalize the fluctuation-dissipation theorem and other relations between the above mentionned functions to infinite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haag, R., Hugenholtz, N. M., Winnink, M.: Commun. math. Phys.5, 215 (1967)

    Google Scholar 

  2. Haake, F.: Statistical treatment of open systems by generalized master equations. Springer Tracts in Modern Physics, Vol. 66. Berlin-Heidelberg-New York: springer 1973

    Google Scholar 

  3. Prigogine, I.: The statistical interpretation of non-equilibrium entropy. In: The Boltzman equation, theory and applications. Cohen, E.G.D., Thirring, W., eds., Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  4. Bongaarts, P. J. M., Fannes, M., Verbeure, A.: Physica68, 587 (1973)

    Google Scholar 

  5. Davies, E. B.: Markovian master equations; to appear in Comm. Math. Phys.

  6. Presutti, E., Scacciatelli, E., Sewell, G. S., Wanderlingh, F.: J. Math. Phys.13, 1085 (1972)

    Google Scholar 

  7. Hepp, K., Lieb, E. H.: Helv. Phys. Acta46, 573 (1973)

    Google Scholar 

  8. Robinson, D. W.:C*-algebras and quantum statistical mechanics; Lecture given at the Varenna Summer School onC*-algebras (1973)

  9. Haag, R., Kaster, D., Trych-Pohlmeyer, E.: commun. math. Phys.38, 173 (1974)

    Google Scholar 

  10. Kubo, R.: J. Phys. Soc. Japan12, 570 (1957)

    Google Scholar 

  11. Mori, H.: Progr. Theor. Phys.33, 423 (1965)

    Google Scholar 

  12. Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications; Lecture Notes in Mathematics128. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  13. Dunford, N., Schwartz, J. T.: Linear operators, Part II. London: Interscience Publishers 1963

    Google Scholar 

  14. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  15. Balslev, E.: Spectral theory of Schrödinger operators of Many-Body systems. Lecture Notes. University of Leuven, Belgium 1971

    Google Scholar 

  16. Van Daele, A.: J. Funct. Ann.15, 378 (1974)

    Google Scholar 

  17. Bogoliubov, N. M.: Dubna reports (unpublished); Physik. Abhandl. Sowjet Union6, 1; 113–229 (1962)

    Google Scholar 

  18. Ruelle, D.: Statistical mechanics. Lemma 5.5. New York: W. A. Benjamin, Inc. 1969

    Google Scholar 

  19. Stone, M. H.: Linear transformations in Hilbert space and their applications to analysis. Providence. Amm. Math. Soc. Colloq. Publ. Vol.15 (1932)

  20. Verbeure, A., Weder, R. A.: Stability in linear response and clustering properties. Commun. math. Phys.44, 101–105 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naudts, J., Verbeure, A. & Weder, R. Linear response theory and the KMS condition. Commun.Math. Phys. 44, 87–99 (1975). https://doi.org/10.1007/BF01609060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609060

Keywords

Navigation