Communications in Mathematical Physics

, Volume 49, Issue 2, pp 187–190 | Cite as

The existence of maximal slicings in asymptotically flat spacetimes

  • M. Cantor
  • A. Fischer
  • J. Marsden
  • N. Ō Murchadha
  • J. York
Article

Abstract

We consider Cauchy data (g, π) on IR3 that are asymptotically Euclidean and that satisfy the vacuum constraint equations of general relativity. Only those (g, π) are treated that can be joined by a curve of “sufficiently bounded” initial data to the trivial data (δ, 0). It is shown that in the Cauchy developments of such data, the maximal slicing condition tr π=0 can always be satisfied. The proof uses the recently introduced “weighted Sobolev spaces” of Nirenberg, Walker, and Cantor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnowitt, R., Deser, S., Misner, C. W.: The dynamics of general relativity, In: Gravitation: an introduction to current research, (ed. L. Witten). New York: Wiley 1962Google Scholar
  2. 2.
    Brill, D., Deser, S.: Variational methods and positive energy in general relativity. Ann. Phys.50, 548–570 (1968)Google Scholar
  3. 3.
    Cantor, M.: Spaces of functions with asymptotic conditions on IRn. Ind. U. J. Math. to appear (1975)Google Scholar
  4. 4.
    Cantor, M.: Perfect fluid flows over IRn with asymptotic conditions, J. Funct. Anal.18, 73–84 (1975)Google Scholar
  5. 5.
    Cantor, M.: Growth of Solutions of elliptic equations with nonconstant coefficients on IRn. PreprintGoogle Scholar
  6. 6.
    Choquet-Bruhat, Y.: Sous-Varietes maximales, ou a courbure constante, de varietes lorentziennes, C. R. Acad. Sc. Paris,280, Ser A, 169–171 (1975)Google Scholar
  7. 7.
    Fischer, A., Marsden, J.: The Einstein equations of evolution — A geometric approach. J. Math. Phys.13, 546–568 (1972)Google Scholar
  8. 8.
    Fischer, A., Marsden, J.: The Einstein evolution equations as a first order quasi-linear hyperbolic system. Commun. math. Phys.28, 1–38 (1972)Google Scholar
  9. 9.
    Fischer, A., Marsden, J.: Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math. A. M. S.27, 219–263 (1975) (also Bull. A. M. S.79, 997–1003 (1973),80, 479–484, and General Relativity and Gravitation5, 73–77 (1974)Google Scholar
  10. 10.
    O'Murchadha, N., York, J. W.: Initial value problem of general relativity (I, II). Phys. Rev. D10, 428–436, 437–446 (1974)Google Scholar
  11. 11.
    O'Murchadha, N., York, J. W.: Gravitational energy. Phys. Rev. D10, 2345–2357 (1974)Google Scholar
  12. 12.
    York, J. W.: The role of conformal three geometry in the dynamics of gravitation. Phys. Rev. Letters28, 1082 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • M. Cantor
    • 1
  • A. Fischer
    • 1
  • J. Marsden
    • 1
  • N. Ō Murchadha
    • 1
  • J. York
    • 1
  1. 1.Department of Physics and AstronomyUniversity of North CarolinaChapel HillUSA

Personalised recommendations