Czechoslovak Journal of Physics B

, Volume 39, Issue 11, pp 1302–1316 | Cite as

Strong coupling Hubbard model and superconductivity



We have shown that systems open to fermion number fluctuations and described by the Hubbard model can be superconducting. This superconductivity must be accompanied by a special type of magnetic order. A unitary transformation is explicitly constructed by which the large interaction term of the Hubbard model is exactly diagonalized. Order parameters of the system related to Green functions of fermions are explicitly evaluated in the strong coupling limit. This model applied to copper-oxygen chains provides a theoretical explanation of highTc superconductivity in compounds of the type YBa2Cu3O7−x.


Strong Coupling Green Function Unitary Transformation Hubbard Model Theoretical Explanation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wu M. K., Ashburn J. R., Torng C. J., Horn P. H., Meng R. L., Gao L., Huang Y. Q., Chu C. W.: Phys. Rev. Lett.58 (1987) 908.Google Scholar
  2. [1a]
    Tarascon J. M., Greene L. H., McKinnon W. R., Hull G. W.: Phys. Rev. B35 (1987) 7115.Google Scholar
  3. [2]
    Fisk Z., Thompson J. D., Zirngiebl E., Smith J. L., Cheong S. W.: Solid State Commun.62 (1987) 743.Google Scholar
  4. [3]
    Tarascon J. M., McKinnon W. R., Greene L. H., Hull G. W., Vogel E. M.: Phys. B36 (1987) 226.Google Scholar
  5. [4]
    Teller E.:in World Congress on Superconductivity, Vol. 8 (Ed. C. G. Burnham, R. D. Kane). World Scientific, Singapore, 1988, p. 303.Google Scholar
  6. [5]
    Little W. A.: Phys. Rev.134 A (1964) 1416.Google Scholar
  7. [6]
    Takahashi M.: Progr. Theor. Phys.42 (2969) 1098.Google Scholar
  8. [6a]
    Dzyaloshinskii I. E., Larkin A. I.: Zh. Eksper. Teor. Fiz.61 (1971) 791.Google Scholar
  9. [7]
    Van Hove L.: Physica16 (1950) 137.Google Scholar
  10. [8]
    Mattheiss L. F.: Phys. Rev. Lett.58 (1987) 1028.Google Scholar
  11. [8]
    Jorgensen J. D., Schuttler H. B., Hinks D. G., Capone D. W., Zhang K., Brodsky M. B., Scalapino D. J.: Phys. Rev. Lett.58 (1987) 1024.Google Scholar
  12. [8a]
    Yu J., Freeman A. J., Xu J. H.; Phys. Ref. Lett.58 (1987) 1035.Google Scholar
  13. [8b]
    Siegrist T., Sunshine S., Murphy, D. W., Cava R. J., Zahurak S. M.: Phys. Rev B35 (1987) 7137.Google Scholar
  14. [9]
    Anderson P. W.: Science235 (1987) 1196.Google Scholar
  15. [10]
    Baskaran G., Zou Z., Anderson P. W.: Solid State Commun.63 (1987) 973.Google Scholar
  16. [10a]
    Anderson P. W., Baskaran G., Zou Z., Hsu T.: Phys. Rev. Lett58 (1987) 2790.Google Scholar
  17. [10b]
    Baskaran G., Anderson P. W.: Phys. Rev. B37 (1988) 580.Google Scholar
  18. [10c]
    Zou Z., Anderson P. W.: Phys. Rev. B37 (1988) 627.Google Scholar
  19. [10d]
    Ruckenstein A. E., Hirschfeld P. I., Appel I.: Phys. Rev B36 (1987) 857.Google Scholar
  20. [10e]
    Kotliar G.: Phys. Rev. B37 (1988) 3664.Google Scholar
  21. [10f]
    Nakamura A., Matsui T.: Phys. Rev. B37 (1988) 7940.Google Scholar
  22. [11]
    Zou Z., Anderson P. W.: Phys. Rev. B37 (1988) 627.Google Scholar
  23. [11a]
    Newns D. M.: Phys. Rev. B36 (1987) 5595.Google Scholar
  24. [12]
    Huang K., Manousakis E.: Phys. Rev. B36 (1987) 8302.Google Scholar
  25. [12a]
    Trugman S. A.: Phys. Rev. B37 (1988) 1597.Google Scholar
  26. [13]
    Emery V. J.: Phys. Rev. Lett.58 (1987) 2794.Google Scholar
  27. [13a]
    Hirsh J. E.: Phys. Rev. Lett.59 (1987) 228.Google Scholar
  28. [13b]
    Zhang F. C., Rice T. M.: Phys. Rev. B37 (1988) 3759.Google Scholar
  29. [14]
    Noga M.: Czech. J. Phys. B38 (1988) 211.Google Scholar
  30. [14a]
    Milko J., Noga M.: Czech J. Phys. B38 (1988) 919.Google Scholar
  31. [15]
    Hohenberg P. C.: Phys. Rev.158 (1967) 383.Google Scholar
  32. [16]
    Noga M.:in the Proceedings: Towards the Theoretical Understanding of High Temperature Superconductivity (Ed. S. Lundquist, E. Tosatti, M. Tosi, Yu Lu). World Scientific, Singapore, 1988, p. 203.Google Scholar
  33. [17]
    Noga M.: Czech. J. Phys. B35 (1985) 1217.Google Scholar
  34. [18]
    Hirsh J. E.: Phys. Rev. Lett.51 (1985) 1900.Google Scholar
  35. [18]
    Hirsh J. E.: Phys. Rev. Lett.51 (1983) 1900.Google Scholar
  36. [18a]
    Hirsh J. E., Tang S., Scalapino D. J.: Phys. Rev. Lett.60 (1988) 1668.Google Scholar
  37. [19]
    Barnes S. E.: J. Phys. F6 (1976) 1375, F7 (1977) 2637.Google Scholar
  38. [19a]
    Coleman P.: Phys. Rev. B29 (1984) 3035.Google Scholar
  39. [19b]
    Read N., Newns D. J.: J. Phys. C16 (1983) 3273.Google Scholar
  40. [20]
    Kotliar G., Ruckenstein A. E.: Phys. Rev. Lett.57 (1986) 1362.Google Scholar
  41. [21]
    MacDonald A. H., Girvon S. M., Yoshioka D.: Phys. Rev. B37 (1988) 9753.Google Scholar
  42. [21a]
    Salomaa M. M.: Phys. Rev. B37 (1988) 9317.Google Scholar
  43. [21b]
    Chao K. A., Spalek J., Oles A. M.: J. Phys. C10 (1977) L 271.Google Scholar
  44. [21c]
    Zaanen J., Oles A. M.: Phys. Rev. B37 (1988) 9423.Google Scholar
  45. [22]
    Affleck I., Marston J. B.: Phys. Rev. B37 (1988) 3774.Google Scholar
  46. [22a]
    Affleck I., Zou Z., Hsu T., Anderson P. W.: Phys. Rev. B38 (1988) 745.Google Scholar
  47. [23]
    Lieb E. H., Wu F. Y.: Phys. Rev. Lett.20 (1968) 1445.Google Scholar
  48. [24]
    Ovchinikov A. A.: Sov. Phys. JETP30 (1970) 1160.Google Scholar
  49. [24a]
    Uimin G. V., Fomichev S. V.: Sov. Phys. JETP36 (1973) 1001.Google Scholar
  50. [24b]
    Carmelo J., Baeriswyl D.: Phys. Rev. B37 (1988) 7541.Google Scholar
  51. [25]
    Noga M.: Czech. J. Phys. B37 (1987) 412.Google Scholar
  52. [26]
    Gutsmiedl P., Wolf G., Andres K.: Phys. Rev. B36 (1987) 1043.Google Scholar
  53. [27]
    Lasjaunias J. C., Noel H., Levet J. C., Potel M., Gougeon P.: Phys. Lett. A129 (1988) 185.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • M. Noga
    • 1
  1. 1.Department of Theoretical PhysicsComenius UniversityBratislavaCzechoslovakia

Personalised recommendations