Czechoslovak Journal of Physics B

, Volume 39, Issue 11, pp 1256–1262 | Cite as

The form factors of the decays π → e¯veγ and K → e¯veγ

  • M. K. Volkov
  • M. Nagy
  • A. N. Ivanov
  • N. I. Troitskaya


In the special type of the quark model we obtain the ratioγ=hA/hV of the axial (hA) and vector (hV) form factors for the decays π → e ¯veγ and K → e¯veγ different from unity. The low-energy theorem, relating the electric polarizability of the charged pion απ with the ratioγ, is analyzed. It is shown thatγ< 1 corresponds to απ, calculated by accounting the contribution of the scalar mesonε(700) into the amplitude of the Compton effect on the pion. In the absence of theε(700) contribution we haveγ=1.


Form Factor Quark Model Electric Polarizability Charged Pion Compton Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bryman D. A., Depommier P., Lecroy C.: Phys. Rep.88 (1982) 151.Google Scholar
  2. [2]
    Holstein B. R.: Phys. Rev.33 (1986) 3316.Google Scholar
  3. [3]
    Paver N., Scadron M.: Nuovo Cimento A78 (1983) 159.Google Scholar
  4. [4]
    Bay A. et al.: Phys. Lett. B174 (1986) 445.Google Scholar
  5. [5]
    Gasser J., Leutwyler H.: Ann. Phys.158 (1984) 142.Google Scholar
  6. [6]
    Avakyan A. Z. et al.: Preprint, P2-86-278, JINR Dubna 1986.Google Scholar
  7. [7]
    Volkov M. K.: Part. Nuclei17 (1986) 433; Ann. Phys.157 (1984) 282.Google Scholar
  8. [8]
    Volkov M. K., Pervushin V. N.: Yad. Fiz.22 (1975) 366; Phys. Lett. B58 (1975) 74.Google Scholar
  9. [9]
    Nambu Y., Jona-Lasinio G.: Phys. Rev.122 (1961) 345.Google Scholar
  10. [10]
    Ivanov A. N., Nagy M., Volkov M. K.: Phys. Lett. B200 (1988) 171.Google Scholar
  11. [11]
    Vaks V., Ioffe B.: Nuovo Cimento10 (1958) 342.Google Scholar
  12. [12]
    Gasiorowicz S., Geffen D. A.: Rev. Mod. Phys.41 (1969) 531.Google Scholar
  13. [13]
    Particle Data Group: Phys. Lett. B170 (1986) 1.Google Scholar
  14. [14]
    Bowler M. G.: Phys. Lett. B182 (1986) 400.Google Scholar
  15. [14a]
    Tömqvist N. A.: Z. Phys. C36 (1987) 695.Google Scholar
  16. [14b]
    Band H. et al.: SLAC-PUB-4333, 1987.Google Scholar
  17. [15]
    Kikkawa K.: Progr. Theor. Phys.56 (1976) 947.Google Scholar
  18. [16]
    Terent'ev M. V.: Yad. Fiz.16 (1972) 162.Google Scholar
  19. [17]
    Antipov Yu. M. et al.: Phys. Lett. B121 (1983) 445.Google Scholar
  20. [18]
    Antipov Yu. M. et al.: Z. Phys. C26 (1985) 495.Google Scholar
  21. [19]
    Volkov M. K., Osipov A. A.: Commun. E2-83-921. JINR, Dubna 1983; Yad. Fiz.41 (1985) 1027.Google Scholar
  22. [20]
    Volkov M. K., Schaale A.: Rapid Commun. N27-88. JINR, Dubna, 1988, p. 4.Google Scholar
  23. [21]
    Egli S. et al.: Phys. Lett. B222 (1989) 533.Google Scholar
  24. [22]
    Volkov M. K., Ivanov A. N.: Teor. Fiz.69 (1986) 156.Google Scholar
  25. [23]
    Volkov M. K., Ivanov A. N.: Comm. P-2-85-566, JINR, Dubna 1985.Google Scholar
  26. [24]
    Volkov M. K.: Phys. Lett. B222 (1989) 298.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • M. K. Volkov
    • 1
  • M. Nagy
    • 2
  • A. N. Ivanov
    • 3
  • N. I. Troitskaya
    • 3
  1. 1.Head Post OfficeJINR DubnaMoscowUSSR
  2. 2.Institute of Physics, EPRCSlovak Acad. Sci.BratislavaCzechoslovakia
  3. 3.Leningrad Polytechnical InstituteLeningradUSSR

Personalised recommendations