Advertisement

Czechoslovak Journal of Physics B

, Volume 39, Issue 11, pp 1222–1238 | Cite as

Dimensional regularization in four dimensions

  • J. Hořejší
  • J. Novotný
  • O. I. Zavialov
Article

Abstract

A new gauge invariant ultraviolet regularization proposed recently is discussed for Abelian gauge theories. This cut-off scheme resembles closely the canonical dimensional regularization (CDR), but it is formulated strictly in four dimensions. In a sense, it may be conceived as a continuous superposition of Pauli-Villars cut-offs. Although it differs from the CDR for a general graph, for some closed fermion loops the two schemes coincide. The new cut-off procedure is also well-suited for practical calculations of Feynman diagrams in the α-parametric representation; in this respect it preserves the merits of CDR. Such a “dimensional regularization in four dimensions” obviously does not suffer from the conceptual problems connected with the definition of theγ5 matrix, which plague conventional DR schemes. Nevertheless, some spurious anomalies in the closed fermion loops do occur, similarly to the Pauli-Villars scheme.

Keywords

Gauge Theory Feynman Diagram Plague General Graph Practical Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zavialov O. I.: Teor. Mat. Fiz.67 (1986) 378 (in Russian).Google Scholar
  2. [2]
    Zavialov O. I.: Renormalized field theory. D. Reidel, Dordrecht, 1989 (to appear).Google Scholar
  3. [3]
    Hořejší J., Zavialov O. I.: Czech. J. Phys. B39 (1989), 478.Google Scholar
  4. [4]
    Itzykson C., Zuber J.-B.: Quantum field theory. McGraw Hill, New York, 1980.Google Scholar
  5. [5]
    Zavialov O. I.: Renormalized Feynman diagrams. Nauka, Moscow, 1979 (in Russian).Google Scholar
  6. [6]
    Hořejší J., Novotny J., Zavialov O. I.: Phys. Lett. B113 (1988) 173.Google Scholar
  7. [7]
    Stepanov B. M.: Teor. Mat. Fiz.5 (1970) 356 (in Russian).Google Scholar
  8. [8]
    'tHooft G., Veltman M.: Nucl. Phys. B44 (1972) 189.Google Scholar
  9. [9]
    Collins J.: Renormalization. Cambridge University Press, Cambridge, 1984.Google Scholar
  10. [10]
    Chanowitz M., Furman M., Hinchliffe I.: Nucl. Phys. B159 (1979) 225.Google Scholar
  11. [11]
    Abdelhafiz M. I., Zrałek M.: Acta Phys. Polon. B18 (1987) 21.Google Scholar
  12. [12]
    Breitenlohner P., Maison D.: Commun. Math. Phys.52 (1977) 11.Google Scholar
  13. [13]
    Brown R. W., Shih C.-C., Young B.-L.: Phys. Rev.186 (1969) 1491.Google Scholar
  14. [14]
    Breitenlohner P., Mitter H.: Nucl. Phys. B7 (1968) 443.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • J. Hořejší
    • 1
  • J. Novotný
    • 1
  • O. I. Zavialov
    • 2
  1. 1.Nuclear Centre, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czechoslovakia
  2. 2.Department of Theoretical PhysicsMathematical InstituteMoscowUSSR

Personalised recommendations