Advertisement

Czechoslovak Journal of Physics B

, Volume 39, Issue 11, pp 1181–1191 | Cite as

On existence of a bound state in an L-shaped waveguide

  • P. Exner
  • P. Šeba
  • P. Št'oviček
Article

Abstract

We investigate the Laplace operator in an L-shaped strip of a widthd with Dirichlet boundary conditions. It is shown that it has a unique eigenvalue corresponding to a square-integrable eigenfunction, namely λ = 0·93 (π/d)2. This result has implications for the theory of waveguides as well as for electron motion in some microscopic semiconductor devices.

Keywords

Boundary Condition Dirichlet Boundary Laplace Operator Dirichlet Boundary Condition Semiconductor Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Votruba V., Muzikář C.: Theory of the Electromagnetic Field, 2nd edition. Academia, Prague, 1958 (in Czech).Google Scholar
  2. [2]
    Votruba V.: Foundations of Special Relativity. Academia, Prague, 1969, (in Czech).Google Scholar
  3. [3]
    Exner P., Šeba P.: J. Math.Phys.30 (1989), No 10.Google Scholar
  4. [4]
    Exner P., Šeba P., Štovíček P.: The edges can bind electrons. Preprint SFB 237, Bochum, 1987; submitted to Phys. Rev. Lett.Google Scholar
  5. [5]
    Exner P., Šeba P.: Trapping modes in curved electromagnetic waveguides. Preprint JINR E5-88-379, Dubna, 1988; submitted to Phys. Lett. A.Google Scholar
  6. [6]
    Reed M., Simon B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York, 1978.Google Scholar
  7. [7]
    Kirilenko A. A., Litvinov V. R., Rudj L. A.: Radiotekhnika i Elektronika24 (1979) 1043.Google Scholar
  8. [8]
    Kirilenko A. A., Rudj L. A., Tkatchenko V. I.: Radiotekhnika i Elektronika30 (1985) 918.Google Scholar
  9. [9]
    Kantorovich L. V., Akilov G. P.: Functional Analysis in Normed Spaces. Fizmatgiz, Moscow, 1969, Sec. XI. 2 (in Russian).Google Scholar
  10. [10]
    Mehran R.: IEEE Trans: Microwave Theor. Tech. MTT-26 (1978) 400.Google Scholar
  11. [11]
    Hundhausen T., Ichiguchi T., Shiraki Y.: Appl. Phys. Lett.53 (1988) 110.Google Scholar
  12. [12]
    Sakaki H.:in Proc. Int. Symp. Foundations of Quantum Physics in the Light of New Technology (eds. S. Kamefuchi et al.) Phys. Soc. Japan, Tokyo, 1983, p. 94.Google Scholar
  13. [13]
    Landauer R.: Phys. Lett. A85 (1981) 91.Google Scholar
  14. [14]
    Timp G. et al.: Phys. Rev. Lett.60 (1988) 2081.Google Scholar
  15. [15]
    Exner P., Šeba P.:in Schroedinger Operators, Standard and Non-Standard (eds. P. Exner, P. Seba). World Scientific, Singapore, 1989.Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1989

Authors and Affiliations

  • P. Exner
    • 1
  • P. Šeba
    • 1
  • P. Št'oviček
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaUSSR

Personalised recommendations