Skip to main content
Log in

Energy band structure of magnetic semiconductor CdCr2Se4 in atomic sphere approximation

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Conclusion

In this paper we have made the first calculation of the electron structure of the magnetic spinel semiconductor CdCr2Se4 by means of the atomic sphere approximation method [1].

The energy spectrum obtained for valence bands and 3d states of chromium is not inconsistent with experimental results. As regards the red shifting band, our calculation shows (even if we today, at the present stage of energy band calculations for CdCr2Se4 and their diverse results [23, 26], consider such an assignment premature) the possibility of the interpretation as the transition from the top of the valence band into the 3d e g states of chromium, given by us some years ago [10, 12] and used recently by Kambara et al. [23]. The crucial point of such an assignment remains the mechanism leading to the red shift of the transition. The application of the molecular field approximation [23, 8] to such a narrow band is wrong. The temperature behavior of the band edge is more complicated [40]. Also the inclusion of hybridization with a broad conduction band [41] does not give, in more precise treatment [24], hopeful results for the large red shift. Another possible mechanism is changing the structure parameteru of the spinel during cooling [39, 42].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen O. K.: Phys. Rev. B12 (1975) 3060.

    Google Scholar 

  2. Andersen O. K., Nohl H., Klose W.: Phys. Rev. B17 (1978) 1209.

    Google Scholar 

  3. Andersen O. K., Skriver H. L., Nohl H., Johanson B.: Pure and Appl. Chem.52 (1979) 93.

    Google Scholar 

  4. Methfessel S., Mattis D. C.: Magnetic Semiconductors, Handbuch der Physik XVIII/1, Springer Verlag, Heidelberg, 1968.

    Google Scholar 

  5. Haas C.: Crit. Rev. Solid State Sci.1 (1970) 47.

    Google Scholar 

  6. Wachter P.: Crit. Rev. Solid State Sci.3 (1972) 189.

    Google Scholar 

  7. Nagaev E. L.: Usp. Fiz. Nauk117 (1975) 437.

    Google Scholar 

  8. Nagaev E. L.: Physics of Magnetic Semiconductors, Nauka, Moskva, 1979.

    Google Scholar 

  9. New developments in semiconductors, (ed. P. R. Wallace), Nordhoff International Publishing Leyden, 1972.

    Google Scholar 

  10. Hlídek P., Barvík I., Prosser V., Vaněček M., Zvára M.: Phys. Status Solidi (b)75 (1976) K45.

    Google Scholar 

  11. Koshizuka N., Yokoyama Y., Okuda T., Tushima T.: J. Appl. Phys.49 (1978) 2183.

    Google Scholar 

  12. Hlídek P., Barvík I.: presented at the Conf. on Ternary Semiconductors, Kishinev, 1976.

  13. Itoh T., Miyata N., Narita S.: Jap. J. Appl. Phys.12 (1973) 1265.

    Google Scholar 

  14. Ahrenkiel R. K., Moser F., Lyn S., Pidgeon C. R.: J. Appl. Phys.40 (1969) 958.

    Google Scholar 

  15. Wittekoek S., Rinzema G.: Phys. Status Solidi (b)44 (1971) 849.

    Google Scholar 

  16. Bongers P. F., Haas C., Van Run A., Zanmarchi G.: J. Appl. Phys.40 (1969) 958.

    Google Scholar 

  17. Pidgeon C. R., Dennis R. B., Webb J. S.: Surface Sci.37 (1970) 340.

    Google Scholar 

  18. Sato K.: J. Phys. Soc. Japan43 (1977) 719.

    Google Scholar 

  19. Taniguchi M., Kato Y., Narita S.: Solid State Commun.16 (1975) 261.

    Google Scholar 

  20. Stoyanov S. G., Iliev M. N., Stoyanova S. P.: Phys. Status Solidi (a)30 (1975) 133.

    Google Scholar 

  21. Koshizuka N., Yokoyama Y., Tsushima T.: Solid State Commun.23 (1977) 967.

    Google Scholar 

  22. Iliev M., Güntherodt G., Pink H.: Solid State Commun.27 (1978) 863.

    Google Scholar 

  23. Kambara T., Oguchi T., Yokoyama G., Gondaira K. I.: presented at the Conf. on Ternary Semiconductors, Tokyo, 1980.

  24. Szöcs V.: Phys. Status Solidi (b)103 (1981) 139.

    Google Scholar 

  25. Barvík I.: Czech. J. Phys. B30 (1980) 1019.

    Google Scholar 

  26. Kambara T., Oguchi T., Gondaira K. I.: J. Phys. C13 (1980) 1493.

    Google Scholar 

  27. Prosser V., Hlídek P., Höschl P., Polívka P., Zvára M.: Czech. J. Phys. B24 (1974) 1168.

    Google Scholar 

  28. Raccah P. M., Bonchard R. J., Wold A.: J. Appl. Phys.37 (1966) 1436.

    Google Scholar 

  29. Rehwald W.: Phys. Rev.155 (1967) 861.

    Google Scholar 

  30. Mattheiss L. F.: Phys. Rev. B5 (1972) 290.

    Google Scholar 

  31. Methods in Computational Physics, Vol. 8., (ed. B. Adler), Academic Press, New York 1968.

    Google Scholar 

  32. Loucks T. L.: Augmented Plane Wave Method, W. A. Benjamin, London, 1967.

    Google Scholar 

  33. Slater J. C., Koster G. F.: Phys. Rev.94 (1954) 1498.

    Google Scholar 

  34. Eagles M. D.: J. Phys. & Chem. Solids39 (1978) 1234.

    Google Scholar 

  35. Eruchimov M. S., Ovchinikov S. G.: Sov. Phys. — Solid State21 (1979) 209.

    Google Scholar 

  36. Kodama K., Niimit T.: Jap. J. Appl. Phys.19 (1980) 307.

    Google Scholar 

  37. Contiho-Fillo M. D., Balberg I.: J. Appl. Phys.50 (1970) 1920.

    Google Scholar 

  38. Pettifor D. G.: J. Phys. F7 (1977) 613.

    Google Scholar 

  39. Zvára M., Prosser V., Schlegel A., Wachter P.: J. Magn. & Magn. Mater.12 (1979) 219.

    Google Scholar 

  40. Čápek V.: Czech. J. Phys. B27 (1977) 686.

    Google Scholar 

  41. Ovchinikov S. G., Edelman I. S., Distmuradov G.: Sov. Phys. — Solid State21 (1979) 2927.

    Google Scholar 

  42. Göbel H.: J. Magn. & Magn. Mater.3 (1976) 143.

    Google Scholar 

  43. Blasse G.: Philips Res. Rep. Suppl.3 (1964) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I would like to thank the Deutscher Akademischer Austauschdienst for the financial support of my stay at the Max-Planck-Institut für Festkörperforschung in Stuttgart, during which the present work has been mostly done, and the Department of Prof. von Schnering, for their kind hospitality. I would also like to acknowledge the helpful discussions with Prof. O. K. Andersen, Dr. H. Nohl and Dr. D. Glötzel during my stay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barvík, I. Energy band structure of magnetic semiconductor CdCr2Se4 in atomic sphere approximation. Czech J Phys 33, 331–340 (1983). https://doi.org/10.1007/BF01601826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601826

Keywords

Navigation