A Saint-Venant principle for a class of second-order elliptic boundary value problems

Zusammenfassung

Ein Saint-Venantsches Prinzip für eine gewisse Art von Randwertproblemen elliptischer Differentialgleichungen zweiter Ordnung wird bewiesen. Der Beweis erfordert die Abschätzung verschiedener energie-artiger Funktionale, die zur Herleitung von lokalen Schranken für die Lösung erforderlich sind. Zur Veranschaulichung wird das Prinzip auf die Berechnung der Kanalströmung einer zähigkeitslosen Flüssigkeit angewendet.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. B. Keller,Saint-Venant's Procedure and Saint-Venant's Principle, Q. appl. Math.22, 293 (1965).

    Google Scholar 

  2. [2]

    R. A. Toupin,Saint-Venant's Principle, Archs ration. Mech. Analysis18, 83 (1965).

    Google Scholar 

  3. [3]

    J. K. Knowles,On Saint-Venant's Principle in the Two-Dimensional Linear Theory of Elasticity, Archs ration. Mech. Analysis21, 1–22 (1966).

    Google Scholar 

  4. [4]

    J. K. Knowles andE. Sternberg,On Saint-Venant's Principle and the Torsion of Solids of Revolution, Archs ration. Mech. Analysis22, 100–120 (1966).

    Google Scholar 

  5. [5]

    J. J. Roseman,A Pointwise Estimate for the Stress in a Cylinder and its Application to Saint-Venant's Principle, Archs ration. Mech. Analysis21, 23 (1966).

    Google Scholar 

  6. [6]

    A. Dou,On the Principle of Saint-Venant, MRC Technical Summary Report No. 472, Math. Res. Center. U.S. Army, Univ. of Wisconsin, Madison, Wis. (1964).

    Google Scholar 

  7. [7]

    E. Sternberg,On Saint-Venant's Principle, Q. appl. Math.11, 393 (1954).

    Google Scholar 

  8. [8]

    D. R. Westbrook,Applications of Asymptotic Integration to Potential Problems for Shells, SIAM J. appl. Math.14, 131–146 (1966).

    Google Scholar 

  9. [9]

    N. Fox,On Asymptotic Expansions in Plate Theory, Proc. Roy. Soc. [A],278, 228–233 (1964).

    Google Scholar 

  10. [10]

    R. T. Shield,On the Stability of Linear Continuous Systems, Z. angew. Math. Phys.16, 649–686 (1965).

    Google Scholar 

  11. [11]

    R. Courant andD. Hilbert,Methods of Mathematical Physics, Vol. 1, Interscience Publishers, Inc., New York 1953.

    Google Scholar 

  12. [12]

    C. H. Hardy, J. E. Littlewood, andG. Polya,Inequalities, The University Press, Cambridge 1959.

    Google Scholar 

  13. [13]

    R. Courant andD. Hilbert,Methods of Mathematical Physics, Vol. 2, Interscience Publishers, Inc., New York 1962.

    Google Scholar 

  14. [14]

    S. L. Sobolev,Applications of Functional Analysis in Mathematical Physics, Am. math. Soc. Trans.7, 1963.

  15. [15]

    J. B. Diaz,Upper and Lower Bounds for Quadratic Functionals, Collnea math.4, 3–49 (1951).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This research was supported in part by the United States Office of Naval Research under Contract Nonr 220(56). Reproduction in whole or in part is permitted for any purpose of the United States Government.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knowles, J.K. A Saint-Venant principle for a class of second-order elliptic boundary value problems. Journal of Applied Mathematics and Physics (ZAMP) 18, 473–490 (1967). https://doi.org/10.1007/BF01601718

Download citation

Keywords

  • Mathematical Method
  • Elliptic Boundary