Skip to main content
Log in

Geometry and stability theory

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

If a mechanical system moves from a configurationx 0 to another configurationx, the work of all the forces, corresponding to all kinematically admissible paths and all speeds of description of those paths, usually is bounded above. It then possesses a least upper bound −Λ(x 0,x). If the system is conservative, Λ(x 0,x) is the inerement of potential energy. However, conservatism is not assumed. The function Λ(x 0,x) plays the role usually given to potential energy in stability theory. This generalization is illustrated with two different dynamical criteria for static stability. Properties of the function Λ(x 0,x) that ensure stable equilibrium at pointx 0 are derived from the law of kinetic energy in the context of geometry of configuration space.

Résumé

Si un système mécanique se déplace d'une configurationx 0 vers une autre configurationx, le travail de toutes les forces, correspondant à tous les chemins admissibles de façon cinématique et à toutes les vitesses de description de ces chemins, est d'habitude limité d'en haut. Le travail possède alors une moindre limite supérieure −Λ(x 0,x). Si le systéme est conservatif, Λ(x 0,x) est l'incrément de l'énergie potentielle. Toutefois, le conservatisme n'est pas supposé. La fonction Λ(x 0,x) joue le rôle qui est d'habitude attribué à l'énergie potentielle dans la théorie de la stabilité. Cette généralisation est illustrée avec deux critériums dynamiques pour la stabilité statique. Les propriétés de la fonction Λ(x 0,x) qui assurent l'équilibre stable au pointx 0 se dérivent de la loi de l'énergie cinétique dans le contexte de géométrie de l'espace de configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Banach,Mechanics, Lwów (1938); English transl. by E. J. Scott. Warsaw (1951), p. 119.

  2. H. Zifgler,Linear Elastic Stability, Z. angew. Math. Phys.4, 167–184 (1953).

    Google Scholar 

  3. R. Shield andA. E. Green,On Certain Methods in the Stability Theory of Continuous Systems, Arch. Rat. Mech. Anal.12, 4, 354–360 (1963).

    Google Scholar 

  4. H. Ziegler,Die Stabilitatskriterien der Elastomechanik, Ing. Arch.20, 49–56 (1952).

    Google Scholar 

  5. F. R. Shanley,Inelastic Column Theory, J. Aero. Sci.14, 5, 261–268 (1947).

    Google Scholar 

  6. D. C. Drucker andE. T. Onat,On the Concept of Stability of Inelastic Systems, J. Aero. Sci.21, 8, 543–549 (1954).

    Google Scholar 

  7. R. L. Jeffery,The Theory of Functions of a Real Variable, 2nd ed, Univ. of Toronto Press, Toronto (1953), Chapt. 2.

    Google Scholar 

  8. F. Hausdorff,Mengenlehre, Dover Publ., New York (1953), Chapt. 6.

    Google Scholar 

  9. C. Lanczos,The Variational Principles of Mechanics, Univ. of Toronto Press, Toronto (1949), 86–87.

    Google Scholar 

  10. J. Pierpont,The Theory of Functions of Real Variables, vol. 1, Ginn & Co., New York (1905).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langhaar, H.L. Geometry and stability theory. Journal of Applied Mathematics and Physics (ZAMP) 29, 549–560 (1978). https://doi.org/10.1007/BF01601484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01601484

Keywords

Navigation