Decoupling and pole-zero assignment of singular systems with dynamic state feedback

Abstract

This paper refers to the problem of designing a linear state feedback dynamic controller for single-input, single-output decoupling of linear, time-invariant, singular systems. Sufficient conditions are established for the state-feedback decoupling problem to have a solution. In the case where the system satisfies these conditions, the class of controller matrices which decouple the system is given. Finally a method is presented for pole-zero placement in the decoupled singular system and a structure is described for the realization of the generalized transfer function matrices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P.L. Falb and W.A. Wolovich, “Decoupling in the design and synthesis of multivariable control systems,”IEEE Trans. Autom. Contr., Vol.AC-12, pp. 651–659, 1967.

    Google Scholar 

  2. [2]

    E.G. Gilbert, “The decoupling of multivariable systems by state feedback,”SIAM. J. Control., Vol.7, pp. 50–63, 1969.

    Google Scholar 

  3. [3]

    W.M. Wonham and A.S. Morse, “Decoupling and pole assignment in linear systems: A geometric approach,”SIAM J. Contr., Vol.8, pp. 1–18, 1970.

    Google Scholar 

  4. [4]

    A.S. Morse and W.M. Wonham, “Decoupling and pole assignment by dynamic compensation,”SIAM J. Control., Vol.8, pp. 317–337, 1970.

    Google Scholar 

  5. [5]

    A.S. Morse and W.M. Wonham, “Status of non-interactive control,”IEEE Trans. on Autom. Contr., Vol.AC-16, pp. 568–581, 1971.

    Google Scholar 

  6. [6]

    L.M. Silverman, “Decoupling with state feedback and precompensation,”IEEE Trans. on Autom. Contr., Vol.AC-15, pp. 487–489, 1970.

    Google Scholar 

  7. [7]

    J.W. Howze and J.B. Pearson, “Decoupling and arbitrary pole placement in linear systems using output feedback,”IEEE Trans. on Autom. Contr., Vol.AC-15, pp. 660–663, 1970.

    Google Scholar 

  8. [8]

    I.H. Mufti, “A note on the decoupling of multivariable systems,”IEEE Trans. Autom. Contr., Vol.AC-14, p. 415, 1969.

    Google Scholar 

  9. [9]

    J.W. Howze, “Necessary and sufficient conditions for decoupling using output feedback,”IEEE Trans. Autom. Contr., Vol.AC-18, pp. 44–46, 1973.

    Google Scholar 

  10. [10]

    W.A. Porter, “Decoupling and inverses for time varying linear systems,”IEEE Trans. Autom. Contr., Vol.AC-14, pp. 378–380, 1969.

    Google Scholar 

  11. [11]

    A.K. Majumdar and A.K. Choudhury, “On the decoupling of nonlinear systems,”Int. J. Control, Vol.16, pp. 705–718, 1972.

    Google Scholar 

  12. [12]

    B.G. Mertzios, “Sensitivity-Factorization-Decoupling of linear multivariable 2-D systems,” Ph.D. Thesis, Department of Electrical Engineering, Democritus U. of Thrace, Xanthi, Greece, 1982.

    Google Scholar 

  13. [13]

    G.C. Verghese, P. Van Dooren and T. Kailath, “Properties of the system matrix of a generalized state space system,”Int. J. Control, Vol.30, pp. 235–243, 1979.

    Google Scholar 

  14. [14]

    G.C. Verghese, B.C. Lévy and T. Kailath, “A generalized state space for singular systems,”IEEE Trans. on Autom. Contr., Vol.AC-26, pp. 811–830, 1981.

    Google Scholar 

  15. [15]

    R.F. Sincovec, A.M. Erisman, E.L. Yip and M.A. Epton, “Analysis of descriptor systems using numerical algorithms,”IEEE Trans. onAutom. Contr., Vol.AC-26, pp. 139–147, 1981.

    Google Scholar 

  16. [16]

    D. Cobb, “Feedback and pole placement in descriptor variable systems,”Int. J. Control, Vol.33, pp. 1135–1146, 1981.

    Google Scholar 

  17. [17]

    E.L. Yip and R.F. Sincovec, “Solvability controllability and observability of continuous descriptor systems,”IEEE Trans. on Autom. Contr., Vol.AC-26, pp. 702–707, 1981.

    Google Scholar 

  18. [18]

    A. J. J. Van Der Weiden and O.H. Bosgra, “The determination of structural properties of a linear multivariable system by operations of system similarity, 2. Non-proper systems in generalized state-space form,”Int. J. Control, Vol.32, pp. 489–537, 1980.

    Google Scholar 

  19. [19]

    C.E. Langenhop, “Controllability and stabilizability of singular linear systems with constant coefficients,” Department of Mathematics, Southern Illinois University.

  20. [20]

    D.G. Luenberger, “Time invariant descriptor systems,”Automatica, Vol.14, pp. 473–480, 1978.

    Google Scholar 

  21. [21]

    J.S. Thorp, “The singular pensil of a linear dynamical system,”Int. J. Control, Vol.18, pp. 577–596, 1973.

    Google Scholar 

  22. [22]

    R.W. Newcomb, “The semistate description of nonlinear time variable circuits,”IEEE Trans. on Circ. and Syst., Vol.CAS-28, pp. 62–71, 1981.

    Google Scholar 

  23. [23]

    P.V. Kokotovic, R.E. O'Malley Jr. and P. Sannuti, “Singular pertubations and order reduction in control theory—An overview,”Automatica, Vol.12, pp. 123–132, 1976.

    Google Scholar 

  24. [24]

    M.M. Milic, “General passive networks — Solvability, degeneracies, and order of complexity,”IEEE Trans. on Circ. and Syst., Vol.CAS-21, pp. 177–183, 1974.

    Google Scholar 

  25. [25]

    R.E. O'Malley Jr. and A. Jameson, “Singular pertubations and singular arcs, I,”IEEE Trans. on Autom. Control, Vol.AC-20, pp. 218–226, 1975.

    Google Scholar 

  26. [26]

    M.A. Christodoulou, “Analysis and synthesis of singular systems,” Ph.D. Thesis, Department of Electrical Engineering, Democritus University of Thrace, Xanthi, Greece, 1984.

    Google Scholar 

  27. [27]

    A.I.G. Vardulakis, D.N.J. Limebeer and N. Karkanias, “Structure and Smith-MacMillan form of a rational matrix at infinity,”Int. J. Control, Vol.35, pp. 701–725, 1982.

    Google Scholar 

  28. [28]

    M.A. Christodoulou and B.G. Mertzios, “Realization of singular systems via Markov parameters,”Int. J. Control, Vol.42, pp. 1433–1441, 1985.

    Google Scholar 

  29. [29]

    T. Kailath,Linear Systems, Prentice Hall, Englewood Cliffs, N.J., 1980.

    Google Scholar 

  30. [30]

    S.H. Wang, “Design of linear multivariable systems,”Memo. No. ERL-M309, Electronics Research Lab, University of California, Berkely, 1971.

    Google Scholar 

  31. [31]

    W.A. Wolovich, “The determination of state space representations for linear multivariable systems,”Proc. Second IFAC Symp. Multivariable Tech. Contr. Systems, Dusseldorf, 1971.

  32. [32]

    W.A. Wolovich and P.L. Falb, “On the structure of multivariable systems,”SIAM J. Control, Vol.7 pp. 437–451, 1969.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mertzios, B.G., Christodoulou, M.A. Decoupling and pole-zero assignment of singular systems with dynamic state feedback. Circuits Systems and Signal Process 5, 49–68 (1986). https://doi.org/10.1007/BF01600186

Download citation

Keywords

  • Transfer Function
  • Generalize Transfer
  • Dynamic State
  • State Feedback
  • Linear State