Skip to main content
Log in

Rate equations in the hopping transport

II. Boundary conditions and limiting processes in a simple 1D model

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

The usual kinetic equations for the site occupation probabilities in an external field are solved exactly in a simple one-dimensional periodic model with two kinds of atoms using a) free boundary conditions and order of limitsN→∞, ω→0 needed for a proper treatment of the dc conductivity here b) boundary conditions with metallic contacts and order of limitsN→∞, ω→0 and c) the same boundary conditions but reversed order of limiting processes ω→0,N→∞ typical of e.g. numerical and percolation treatments. (N and ω are the number of sites and frequency.) It is demonstrated that though the bulk dc conductivity is the same in all three cases, local bulk properties of the material are strongly dependent on the régime used. The role of the order of all three limiting processes ω→0,N→+∞ andn→+∞ (Nn→+∞) for local shifts of the chemical potentialδμ n in the dc limit is examined (n is the number of the relevant site calculated from a boundary of the chain). It is shown especially that the rate equation treatment (régime a) on the one hand and numerical or percolation treatments (régime c) on the other hand never yield the same bulk values ofδμ r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Čápek V., Czech. J. Phys.B27 (1977), 449.

    Google Scholar 

  2. Butcher P. N., J. Phys. C: Solid State Physics5 (1972), 1817.

    Google Scholar 

  3. Butcher P. N., Morys P. L., J. Phys. C: Solid State Physics6 (1973), 2147.

    Google Scholar 

  4. Butcher P. N., J. Phys. C: Solid State Physics7 (1974), 879.

    Google Scholar 

  5. Butcher P. N., J. Phys. C: Solid State Physics7 (1974), 2645.

    Google Scholar 

  6. Brenig W., Döhler G., Wölfle P., Z. Phys.246 (1971), 1.

    Google Scholar 

  7. Brenig W., Döhler G., Wölfle P., Z. Phys.258 (1973), 381.

    Google Scholar 

  8. Manucharyants E. O., Zvyagin I. P., phys. stat. sol. (b)65 (1974), 665.

    Google Scholar 

  9. Zvyagin I. P., Keiper R., Wiss. Zeitsch. Humb. Univ. Berlin, Math.-Nat. R.XXI (1972), 459.

    Google Scholar 

  10. Miller A., Abrahams E., Phys. Rev.120 (1960), 745.

    Google Scholar 

  11. Ambegaokar V., Halperin B. I., Langer S., Phys. Rev.B4 (1971), 2612.

    Google Scholar 

  12. Pollak M., J. Non-Cryst. Solids11 (1972), 1.

    Google Scholar 

  13. Shklovskii B. I., Efros A. L., Zh. Exp. Theor. Phys.60 (1971), 867.

    Google Scholar 

  14. Shklovskii B. I., Efros A. L., Usp. Fiz. Nauk117 (1975), 401.

    Google Scholar 

  15. Ambegaokar V., Cochran S., Kurkijärvi J., Phys. Rev.B8 (1973), 3682.

    Google Scholar 

  16. Seager C. N., Pike G. E., Phys. Rev.B10 (1974), 1435.

    Google Scholar 

  17. Barker J. R., J. Phys. C: Solid State Physics9 (1976), 4397.

    Google Scholar 

  18. Čápek V., J. Phys. Chem. Sol.38 (1977), 623.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čápek, V. Rate equations in the hopping transport. Czech J Phys 29, 545–556 (1979). https://doi.org/10.1007/BF01600175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01600175

Keywords

Navigation