Skip to main content
Log in

Dispersive delay at gigahertz frequencies using magnetostatic waves

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Magnetostatic waves are intrinsically suited for use in microwave dispersive delay lines, because they are readily generated at high frequencies and their velocity is frequency dependent. Here we review progress toward meeting the systems requirement that the delay time be linear in frequency. Magnetostatic waves can approach this condition if a ground plane is nearby or if two or more ferrite layers are present; with forward volume waves one may also use a dispersive reflecting array, as is done with surface acoustic waves. The use of a properly shaped ground plane gives the lowest phase errors so far measured (±16° over 0.6 GHz); multiple ferrite layers show promise of allowing the greatest delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Damon and J. R. Eshbach, “Magnetostatic modes of a ferrite slab,”J. Phys. Chem. Solids 19, 308 (1961).

    Google Scholar 

  2. W. L. Bongianni, “Magnetostatic propagation in a dielectric layered structure,”J. Appl. Phys. 43, 2541 (1972).

    Google Scholar 

  3. N. D. J. Miller, “Magnetostatic volume wave propagation in a dielectric layered structure,”Phys. Status Solidi,A37, 83 (1976).

    Google Scholar 

  4. R. E. DeWames and T. Wolfram, “Characteristics of magnetostatic surface waves for a metallized ferrite slab,”J. Appl. Phys. 41, 5243 (1970).

    Google Scholar 

  5. M. R. Daniel, J. D. Adam, and T. W. O'Keeffe, “A linearly dispersive magnetostatic delay line at X-band,” 1979 Ultrasonics Symposium, IEEE Cat. No. 79CH1482-9, p. 806;IEEE Trans. Magnetics MAG-15, 1735 (1979).

  6. J. D. Adam, S. N. Bajpai, M. R. Daniel, P. R. Emtage, S. H. Talisa, and R. W. Weinert, “MSW Variable Time Delay Techniques,” Final Report to USAF Rome Air Development Center, Contract No. F19628-80-C-0150 (1982).

  7. J. D. Adam, M. R. Daniel, T. W. O'Keeffe, and P. R. Emtage, “Magnetic Surface Wave Device Technology,” Final Report to USAF Aeronautical Systems Division, Wright Patterson AFB, Contract No. F33615-77-C-1068 (1980).

  8. T. W. O'Keeffe and R. W. Patterson, “Magnetostatic surface-wave propagation in finite samples,”J. Appl. Phys. 49, 4886 (1978).

    Google Scholar 

  9. K. W. Chang, J. M. Owens, and R. L. Carter, “Linearly dispersive time-delay control of magnetostatic surface waves by variable ground-plane spacing,”Electronics Letters 19, 546 (1983).

    Google Scholar 

  10. T. Wolfram, “Magnetostatic waves in layered magnetic structures,”J. Appl. Phys. 41, 4748 (1970).

    Google Scholar 

  11. H. Pfeiffer, “Characteristics of magnetostatic surface waves for a system of two magnetic films,”Phys. Status Solidi A18, K53 (1973); “Magnetostatic modes in a combination of two magnetic films,”Phys. Status Solidi A19, K85 (1973).

    Google Scholar 

  12. A. K. Ganguly and C. Vittoria, “Magnetostatic wave propagation in double layers of magnetically anisotropic slabs,”J. Appl. Phys. 45, 4665 (1974).

    Google Scholar 

  13. N. S. Chang and Y. Matsuo, “Numerical analysis of magnetostatic surface wave delay line using layered magnetic thin slabs,”Proc. IEEE 66, 1577 (1978).

    Google Scholar 

  14. H. Sasaki and N. Mikoshiba, “Directional coupling of magnetostatic surface waves in layered magnetic thin films,”Electronics Letters 15, 172 (1979); “Directional coupling of magnetostatic surface waves in a layered structure of YIG films,”J. Appl. Phys. 52, 3546 (1981).

    Google Scholar 

  15. P. Grünberg, “Magnetostatic spinwave modes of a ferromagnetic double layer,”J. Appl. Phys. 51, 4338 (1980); “Magnetostatic spin-wave modes of a heterogeneous ferromagnetic double layer,”J. Appl. Phys. 52, 6824 (1981).

    Google Scholar 

  16. L. R. Adkins and H. L. Glass, “Propagation of magnetostatic surface waves in multiple magnetic layer structures,”Electronics Letters 16, 590 (1980); “Magnetostatic volume wave propagation in multiple ferrite layers,”J. Appl. Phys. 53, 8928 (1982).

    Google Scholar 

  17. M. R. Daniel and P. R. Emtage, “Magnetostatic volume wave propagation in a ferrimagnetic double layer,”J. Appl. Phys. 53, 3723 (1982).

    Google Scholar 

  18. J. P. Parekh and K. W. Chang, “Magnetostatic forward volume wave dispersion control utilizing a layered YIG-film structure,”IEEE Trans. Magnetics MAG-18, 1610 (1982); 1983 Conference on Magnetism and Magnetic Materials.

    Google Scholar 

  19. P. Grünberg and K. Mika, “Magnetostatic spin-wave modes of a ferromagnetic multilayer,”Phys. Rev. B27, 2955 (1983).

    Google Scholar 

  20. R. E. Camley, T. S. Rahman, and D. L. Mills, “Magnetic excitations in layered media: Spin waves and the light-scattering spectrum,”Phys. Rev. B27, 261 (1983).

    Google Scholar 

  21. P. R. Emtage and M. R. Daniel, “Magnetostatic waves and spin waves in layered ferrite structures,”Phys. Rev. B29, 212 (1984).

    Google Scholar 

  22. M. Tsutsumi, Y. Sakaguchi, and N. Kumagai, “The magnetostatic surface-wave propagation in a corrugated YIG slab,”Appl. Phys. Letters 31, 779 (1977).

    Google Scholar 

  23. J. P. Parekh and H. S. Tuan, “Magnetostatic surface wave reflectivity of a shallow groove on a YIG film,”Appl. Phys. Letters 30, 667 (1977); “Reflection of magnetostatic surface waves at a shallow groove on a YIG film,”Appl. Phys. Letters 31, 709 (1977); “Oblique incidence of magnetostatic surface and forward-volume waves at shallow grooves on a YIG film,”IEEE Trans. Magnetics MAG-15, 1741 (1979).

    Google Scholar 

  24. J. M. Owens, J. H. Collins, C. V. Smith, Jr., and I. I. Chiang, “Oblique incidence of magnetostatic waves on a metallic grating,”Appl. Phys. Letters 31, 781 (1977).

    Google Scholar 

  25. J. M. Owens, C. V. Smith, Jr., S. N. Lee, and J. H. Collins, “Magnetostatic wave propagation through periodic metallic gratings,”IEEE Trans. Magnetics,MAG-14, 820 (1978).

    Google Scholar 

  26. R. L. Carter, J. M. Owens, C. V. Smith, Jr., and K. W. Reed, “Ionimplanted magnetostatic wave reflective array filters,”J. Appl. Phys. 53, 2655 (1982).

    Google Scholar 

  27. J. D. Adam, S. N. Bajpai, M. R. Daniel, W. E. Kramer, and Z. K. Kun, “Magnetostatic wave device technology,” Interim status report to USAF Aeronautical Systems Division, Wright Patterson AFB, Contract No. F33615-81-C1430 (1982).

  28. R. L. Carter, C. V. Smith, Jr., and J. M. Owens, “Magnetostatic forward volume wave-spin wave conversion by etched gratings in LPE-YIG,”IEEE Trans. Magnetics,MAG-16, 1159 (1980).

    Google Scholar 

  29. E. K. Sittig and G. A. Coquin, “Filters and dispersive delay lines using repetitively mismatched ultrasonic transmission lines,”IEEE Trans. Sonics and Ultrasonics,SU-15, 111 (1968).

    Google Scholar 

  30. G. Volluet, “Magnetostatic forward volume wave reflective dot arrays,”IEEE Trans. Magnetics,MAG-17, 2964 (1981).

    Google Scholar 

  31. J. M. Owens, R. L. Carter, C. V. Smith, Jr., and J. H. Collins, “Magnetostatic waves, microwave SAW?,” 1980 Ultrasonics Symposium, IEEE Catalogue No. 80CH1602-2, 506 (1980).

  32. G. Volluet and P. Hartemann, “Reflection of magnetostatic forward volume waves by ion implanted gratings,” 1981 Ultrasonics Symposium, IEEE Catalogue No. 81CH1689-9, 394 (1981).

  33. K. W. Reed, J. M. Owens, R. L. Carter, and C. V. Smith, “An oblique incidence ion implanted MSFVW RAF with linear group delay,” International Microwave Symposium, IEEE Catalogue No. 83CH1871-3, 259 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, M.R., Adam, J.D. & Emtage, P.R. Dispersive delay at gigahertz frequencies using magnetostatic waves. Circuits Systems and Signal Process 4, 115–135 (1985). https://doi.org/10.1007/BF01600076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01600076

Keywords

Navigation