Skip to main content
Log in

Thermal boundary condition effects on heat transfer in turbulent rough-wall boundary layers

Einfluß der thermischen Randbedingungen auf die Wärmeübertragung in turbulenten Grenzschichten an rauhen Wänden

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Measurements and predictions are presented which investigate the effects of thermal boundary condition on heat transfer in the turbulent rough-wall boundary layer. Stanton number measurements are reported for the turbulent flow of air over rough plates with a variety of thermal boundary conditions on two separate rough surfaces. The cases considered are constant wall temperature, constant wall heat flux, step wall temperature, and piecewise linear wall temperature distributions. These measurements and data from other sources are compared with predictions using finite difference solutions of the discrete element roughness model and with superposition solutions. The predictions and the measurements are in good to excellent agreement.

Zusammenfassung

In dieser Arbeit werden Messungen und Berechnungen gezeigt, die den Einfluß der thermischen Randbedingungen auf die Wärmeübertragung in turbulenten Grenzschichten an rauhen Wänden untersuchen. Es werden Messungen der Stanton Zahl für turbulente Luftströmung über rauhe Platten an zwei separaten Oberflächen unter einer Reihe von thermischen Randbedingungen dargestellt. Die betrachteten Fälle sind konstante Wandtemperatur, konstanter Wärmestrom durch die Wand, abgestufte Wandtemperatur und stückweise konstante Wandtemperatur. Diese Messungen, sowie Daten anderer Untersuchungen, werden mit Berechnungen durch Finite-Differenzen Lösungen des Diskrete-Elemente-Rauhheits-Modells und Superpositionslösungen verglichen. Berechnungen und Messungen liegen in guter bis ausgezeichneter Übereinstimmung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

plate surface area

a j :

parameter in Eq. (17)

b i :

finite step in wall temperature; Eq. (17)

C D :

roughness element drag coefficient

C f :

skin friction coefficient

C p :

specific heat

d 0 :

roughness element base diameter

d(y):

local roughness element diameter

g(ξ, x):

kernel function in Eq. (20)

H :

enthalpy

H 0,∞ :

freestream total enthalpy

h(ξ, x):

kernel function in Eq. (16)=ϱ C p U St (x, ξ)

k :

roughness element height

K :

roughness element thermal conductivity

l m :

mixing length

L :

roughness element spacing

m j :

slope in piecewise linear wall temperature variation; Eq. (17)

M :

number of ramps in Eq. (17)

N :

number of steps in Eq. (17)

Nu d :

roughness element Nusselt number

P :

pressure

Pr :

Prandtl number

Pr t :

turbulent Prandtl number

q c :

conductive heat loss rate

q r :

radiative heat loss rate

q w″:

wall heat flux

r :

recovery factor

Re d :

Reynolds number based on local roughness element diameter

Re x :

x-Reynolds number

St :

Stanton number

St t :

Stanton number for constant wall temperature

T :

local fluid static temperature

T 0 :

freestream stagnation temperature

T r :

freestream recovery temperature

T R :

roughness element temperature

T w :

wall (plate) temperature

u :

mean longitudinal velocity

uv′:

Reynolds shear stress factor

U :

freestream velocity

(U A)eff :

effective overall conductance forq c calculation

vh′:

turbulent heat flux factor

v :

mean normal velocity

W :

plate heater power

x :

axial distance from nozzle exit

y :

coordinate normal to surface

y + :

y-plus;131-6

β r(a, b):

incomplete beta function

β x :

blockage factor

β y :

blockage factor

Γ(x):

gamma function

δ :

boundary layer thickness

ε :

plate surface emissivity

μ :

viscosity

ν :

kinematic viscosity

ξ :

integration parameter

ϱ :

density

φ :

unheated length

t :

turbulent

w :

wall

∞:

freestream

References

  1. Reynolds, W. C.; Kays, W. M.; Kline, S. J.: Heat transfer in the turbulent incompressible boundary layer. Parts I, II, and III, NASA MEMO 12-1-58W, 12-2-58W, 12-3-58W, 1958

  2. Love, P. H.; Taylor, R. P.; Coleman, H. W.; Hosni, M. H.: Effects of thermal boundary condition on heat transfer in the turbulent incompressible flat plate boundary layer. Report TFD-88-3, Mechanical and Nuclear Engineering Department, Mississippi State University, 1988

  3. Taylor, R. P.; Coleman, H. W.; Hosni, M. H.; Love, P. H.: Thermal boundary condition effects on heat transfer in the turbulent incompressible flat plate boundary layer. Int. J. Heat Mass Transfer 32 (1989) 1165–1174

    Google Scholar 

  4. Taylor, R. P.; Love, P. H.; Coleman, H. W.; Hosni, M. H.: Step heat flux effects on turbulent boundary layer heat transfer. AIAA J. Thermophysics and Heat Transfer 4 (1990) 121–123

    Google Scholar 

  5. Taylor, R. P.; Love, P. H.; Coleman, H. W.; Hosni, M. H.: Heat transfer measurements in incompressible turbulent flat plate boundary layers with step wall temperature boundary conditions. ASME J. Heat Transfer 112 (1990) 245–247

    Google Scholar 

  6. Taylor, R. P.; Love, P. H.; Coleman, H. W.; Hosni, M. H.: The effects of step changes in thermal boundary condition on heat transfer in the incompressible flat plate turbulent boundary layer. In: Heat Transfer in Convective Flows, ASME HTD-Vol. 107 (1989) 9–16

    Google Scholar 

  7. Cebeci, T.; Bradshaw, P.: Physical and computational aspects of convective heat transfer. New York: Springer 1984

    Google Scholar 

  8. Coleman, H. W.: Momentum and energy transport in the accelerated fully rough turbulent boundary layer. Ph.D. Dissertation, Mechanical Engineering Department, Stanford University, 1976 (also Report HMT-24)

  9. Coleman, H. W.; Pimenta, M. M.; Moffat, R. J.: Rough-wall turbulent heat transfer with variable velocity, wall temperature, and blowing. AIAA J. 16 (1978) 78–82

    Google Scholar 

  10. Ligrani, P. M.: The thermal and hydrodynamic behavior of thick, rough-wall, turbulent boundary layers. Ph.D. Dissertation, Mechanical Engineering Department, Stanford University, 1979 (also Report HMT-29)

  11. Cebeci, T.; Chang, K. C.: Calculation of incompressible rough-wall boundary layer flows. AIAA J. 16 (1978) 730–735

    Google Scholar 

  12. Taylor, R. P.; Hosni, M. H.; Coleman, H. W.: Comparison of constant wall temperature and heat flux cases for the turbulent rough-wall boundary layer. Experimental Heat Transfer 3 (1990) 117–127

    Google Scholar 

  13. Taylor, R. P.; Hosni, M. H.; Garner, J. W.; Coleman, H. W.: Rough-wall turbulent heat transfer with step wall temperature boundary conditions. AIAA paper 90-1501 presented at the AIAA 21st Fluid Dynamics, Plasmadynamics and Lasers Conference, 1990

  14. Taylor, R. P.; Coleman, H. W.; Hodge, B. K.: A discrete element prediction approach for turbulent flow over rough surfaces. Report TFD-84-1, Mechanical and Nuclear Engineering Department, Mississippi State University, 1984

  15. Coleman, H. W.; Hosni, M. H.; Taylor, R. P.; Brown, G. B.: Smooth wall qualification of a turbulent heat transfer test facility. Report TFD-88-2, Mechanical and Nuclear Engineering Department, Mississippi State University, 1988

  16. Eckert, E. R. G.; Goldstein, R. J.: Measurements in Heat Transfer, 2nd edition, New York: McGraw-Hill 1976

    Google Scholar 

  17. Measurement Uncertainty, ANSI/ASME PTC 19. 1. 1985 Part 1, 1986

  18. Coleman, H. W.; Steele, W. G.: Experimentation and uncertainty analysis for engineers. New York: Wiley 1989

    Google Scholar 

  19. Lin, T. C.; Bywater, R. J.: The evaluation of selected turbulence models for high-speed rough wall boundary layer calculations. AIAA paper 80-0132, 1980

  20. Scaggs, W. F.; Taylor, R. P.; Coleman, H. W.: Measurement and prediction of rough wall effects on friction factors in turbulent pipe flow. Report TFD-88-1, Mechanical and Nuclear Engineering Department, Mississippi State University, 1988

  21. Hosni, M. H.; Coleman, H. W.; Taylor, R. P.: Measurement and calculation of surface roughness effects on turbulent flow and heat transfer. Report TFD-89-1, Mechanical and Nuclear Engineering Department, Mississippi State University, 1989

  22. Gatlin, B.; Hodge, B. K.: A generalized program for computing two-dimensional boundary layers on a personal computer. In: Numerical Heat Transfer with Personal Computers and Super-computing. ASME HTD-Vol. 110 (1989) 25–30

    Google Scholar 

  23. Kays, W. M.; Crawford, M. E.: Convective heat and mass transfer. New York: McGraw-Hill 1980

    Google Scholar 

  24. Schultz-Grunow, F.: New frictional resistance law for smooth plates. NACA TM 986, Washington DC, 1941

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, R.P., Hosni, M.H., Garner, J.W. et al. Thermal boundary condition effects on heat transfer in turbulent rough-wall boundary layers. Wärme - und Stoffübertragung 27, 131–140 (1992). https://doi.org/10.1007/BF01599926

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01599926

Keywords

Navigation