Skip to main content
Log in

Comparison between static and adiabatic coupling mechanisms for nonradiative multiphonon transitions in semiclassical approximation I. Tunnelling at small relaxation

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

Basic equations of the perturbational theory of nonradiative multiphonon transitions are reformulated in semiclassical approximation. They are specialized for the mechanisms of static (diabatic) and adiabatic coupling corresponding to the polar alternatives of crossing versus non-crossing oscillator potentials in a two-level-one-mode system. Tunnelling rates are calculated on the basis of contour integrals in the complex co-ordinate plane. These rates for static coupling are proportional to the square of the off-diagonal electron-oscillator interaction as commonly expected. For the alternative of adiabatic coupling we have obtained a non-monotonous (oscillating) pre-exponential transition rate factor. This unfamiliar result is based on a certain “beyondnon-Condon” procedure consisting in a consequent observation both of the familiarnon-Condon effect represented by the Lorentz function behaviour of the non-adiabaticity term and the associatedavoided- crossing (hyperbolic) behaviour of adiabatic potentials in the classical transition region. Present results confirm both the general non-equivalence of both alternative coupling mechanisms and a certain asymptotic approach between mechanism-specific tunnelling rates at small off-diagonal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel J.: Phys. Rev.37 (1931) 17.

    Google Scholar 

  2. Huang K., Rhys A.: Proc. Roy. Soc. A204 (1950) 406.

    Google Scholar 

  3. Pässler R.: Czech. J. Phys. B24 (1974) 322.

    Google Scholar 

  4. Pässler R.: Wiss. Z. TH Karl-Marx-Stadt17 (1975) 381.

    Google Scholar 

  5. Pässler R.: Czech. J. Phys. B32 (1982) 846.

    Google Scholar 

  6. Wagner M.: J. Phys. C15 (1982) 5077.

    Google Scholar 

  7. Haug A.: Theoretische Festkörperphysik II. Deuticke, Wien, 1970.

    Google Scholar 

  8. Born M., Oppenheimer R.: Ann. Phys. (Germany)84 (1927) 457.

    Google Scholar 

  9. Seitz F.: The Modern Theory of Solids. Mc Graw-Hill, New York and London, 1940, sec. 116.

    Google Scholar 

  10. Meyer H. J. G.: Halbleiterprobleme3 (1956) 230.

    Google Scholar 

  11. Stasiw O.: Elektronen- und Ionenprozesse in Ionenkristallen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.

    Google Scholar 

  12. Perlin Yu. E.: Usp. Fiz. Nauk80 (1963) 553.

    Google Scholar 

  13. Wagner M.: Phys. Status Solidi B115 (1983) 427.

    Google Scholar 

  14. Rickayzen G.: Proc. Roy. Soc. A241 (1957) 480.

    Google Scholar 

  15. Gummel H., Lax M.: Ann. Phys. (N. Y.)2 (1957) 28.

    Google Scholar 

  16. Bonch-Bruevich V. L., Landsberg E. G.: Phys. Status Solidi B29 (1968) 9.

    Google Scholar 

  17. Landsberg P. T.: Phys. Status Solidi B41 (1970) 457.

    Google Scholar 

  18. Huang K.: Sci. Sin.24 (1981) 27.

    Google Scholar 

  19. Peuker K., Enderlein R., Schenk A., Gutsche E.: Phys. Status Solidi B109 (1982) 599.

    Google Scholar 

  20. Kovarskii V. A.: Fiz. Tver. Tela4 (1962) 1636.

    Google Scholar 

  21. Kovarskii V. A., Sinyavskii E. P.: Fiz. Tver. Tela4 (1962) 3202.

    Google Scholar 

  22. Sinyavskii E. P., Kovarski V. A.: Fiz. Tver. Tela9 (1967) 1464.

    Google Scholar 

  23. Nitzan A., Jortner J.: J. Chem. Phys.56 (1972) 3360.

    Google Scholar 

  24. Soukup J.: Thesis. TH Karl-Marx-Stadt, 1975.

  25. Ridley B. K.: J. Phys. C11 (1978) 2323.

    Google Scholar 

  26. Helmis G.: Ann. Phys. (Germany)19 (1956) 41.

    Google Scholar 

  27. Pässler R.: Phys. Status Solidi B65 (1974) 561.

    Google Scholar 

  28. Pässler R.: Thesis. TH Karl-Marx-Stadt, 1972.

  29. Kubo R., Toyozawa Y.: Prog. Theor. Phys.13 (1955) 160.

    Google Scholar 

  30. Gutsche E.: J. Lumin.24/25 (1981) 689.

    Google Scholar 

  31. Gutsche E.: Phys. Status Solidi B109 (1982) 583.

    Google Scholar 

  32. Burt M. G.: J. Phys. C15 (1982) L 381.

    Google Scholar 

  33. Burt M. G.: J. Phys. C16 (1983) 4137.

    Google Scholar 

  34. Bartram R. H., Stoneham A. M.: J. Phys. C18 (1985) L 549.

    Google Scholar 

  35. Sharf B., Silbey R.: Chem. Phys. Lett.9 (1971) 125.

    Google Scholar 

  36. Sharf B.: Chem. Phys. Lett.14 (1972) 315.

    Google Scholar 

  37. Leistner G.: Diplomarbeit. TH Karl-Marx-Stadt, 1974.

  38. Stueckelberg E. C. G.: Helv. Phys. Acta5 (1932) 369.

    Google Scholar 

  39. Neumark G. F., Kosai K.: Semiconductors and Semimetals19 (1983) 1.

    Google Scholar 

  40. Markvart T.: J. Phys. C14 (1981) L 895.

    Google Scholar 

  41. Markvart T.: J. Phys. C17 (1984) 6303.

    Google Scholar 

  42. Averbukh I. Sh., Kovarskii V. A., Perel'man N. F.: Zh. Eksp. Teor. Fiz.74 (1978) 1230.

    Google Scholar 

  43. Christov S. G.: Philos. Mag. B49 (1984) 325.

    Google Scholar 

  44. Born M.: Nachr. Akad. Wiss. Göttingen — Math. Phys. Kl. (1951), p. 1.

  45. Landau L., Lifschitz E. M.: Quantenmechanik. Akademie-Verlag, Berlin, 1974.

    Google Scholar 

  46. Pässler R.: Treatise of activation regimes, 1984; unpublished hitherto (see part II).

  47. Dawydow A. S.: Quantenmechanik. VEB Deutscher Verlag d. Wiss., Berlin, 1974.

    Google Scholar 

  48. Teller E.: Isr. J. Chem.7 (1969) 337.

    Google Scholar 

  49. Landau L.: Physik Z. SU1 (1932) 88.

    Google Scholar 

  50. Landau L.: Physik. Z. SU2 (1932) 46.

    Google Scholar 

  51. Zener C.: Proc. Roy. Soc. A137 (1932) 696.

    Google Scholar 

  52. Neumann J. v., Wigner E.: Physik. Z.30 (1929) 467.

    Google Scholar 

  53. Stoneham A. M.: Rep. Prog. Phys.44 (1981) 1251.

    Google Scholar 

  54. Dwight H. B.: Tables of Integrals. Macmillan Comp., New York, 1961.

    Google Scholar 

  55. Bykhovskii V. K., Nikitin E. E., Ovchinikova M. Ya.: Zh. Eksp. & Teor. Fiz.47 (1964) 750.

    Google Scholar 

  56. Pässler R.: J. Phys. C17 (1984) 5957.

    Google Scholar 

  57. Pässler R.: Phys. Status Solidi B86 (1978) K 39.

    Google Scholar 

  58. Pässler R.: Czech. J. Phys. B34 (1984) 377.

    Google Scholar 

  59. Pässler R.: J. Phys. C13 (1980) L 901.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pässler, R. Comparison between static and adiabatic coupling mechanisms for nonradiative multiphonon transitions in semiclassical approximation I. Tunnelling at small relaxation. Czech J Phys 39, 155–195 (1989). https://doi.org/10.1007/BF01597325

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01597325

Keywords

Navigation