Skip to main content
Log in

Non-equilibrium fluid dynamics-laminar flow over a flat plate

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Zusammenfassung

Es werden die grundlegenden Wechselwirkungen in strömenden Mischungen und Suspensionen untersucht, deren einzelne Komponenten nicht miteinander im thermischen Gleichgewicht sind und auch verschiedene Geschwindigkeiten besitzen. Die Untersuchung erfolgt am Beispiel der Laminarströmung über eine ebene Platte. Energie- und Impuls-Relaxation und die Diffusivität der einzelnen Komponenten werden berücksichtigt. Dabei werden gewisse Ähnlichkeitsgesetze gewonnen. Die Theorie eignet sich als Ausgangspunkt für eine tiefer in die Einzelheiten eindringende Analyse. Ihre Ergebnisse sind anwendbar auf Fälle wie Wasserstoff-Uranmischungen, Aerosol-Suspensionen und schwach ionisierte Gase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A :

0.332

c t :

constant as defined

c p :

specific heat at constant pressure

C n :

coefficients of series expansion of Blasius solution

D i :

diffusivity of componenti

f :

Blasius function

g, m, h, t g_, m_, h_, t_ :

functions for velocities, density and temperature distributions

n :

number density

N Le :

Lewis number

N Pr :

Prandtl number

N Sc :

Schmidt number

T :

temperature

u, v :

components of velocity along and normal to a flat plate

U :

free stream velocity

x, y :

corrdinates along and normal to a flat plate

α:

thermal diffusivity

δ, δ i :

boundary layer thickness for the predominating component and componenti

δ g , δ h , δ t :

deviation due to approximation in Blasius series

ϰ:

thermal conductivity

η, ξ:

transformed coordinates or similarity parameter

μ:

viscosity

ν:

kinematic viscosity

ϱ:

density

τ i :

relaxation time for momentum transfer from the predominating component to componenti

θ i :

relaxation time for energy transfer from the predominating component to componenti

*:

dimensionless quantities as defined

a, b, c, ... :

for parts of functions of similar order

i :

for componenti of mixture

0, 1, 2, ...:

order of perturbation or as noted

∞:

for state at infinity

mixture :

for the overall mixture

w :

for the wall

t :

for temperature

tr :

for transition

Bibliography

  1. S. L. Soo,Fluid Mechaniss of Non-Equilibrium Systems, Proc. of 17th Congress of Int. Astro. Fed. (Madrid, Spain, Oct. 9–15, 1966), 3–11.

  2. M. N. Bahadori andS. L. Soo,Non-Equilibrium Transport Phenomena of Partially Ionized Argon, Int. J. Heat Mass Transf.9, 17–34 (1966).

    Google Scholar 

  3. L. Talbot, Y. S. Chou andF. Robben,Expansion of a Partially-Ionized Gas Through a Supersonic Nozzle, Inst. of Eng. Res. Report No. AS-65-14 (AROSR Grant 538-65), Univ. of Calif. (Berkeley 1965).

    Google Scholar 

  4. J. C. Evvard,Wheel-Flow Gaseous Core Reactor Concept NASA TN D-2951 (1965).

  5. S. L. Soo,Laminar and Separated Flow of a Particulate Suspension, Astronautica Acta11, 422–431 (1965).

    Google Scholar 

  6. S. L. Soo,Fluid Dynamics of Multiphase Systems, Blaisdell Pub. Co., Waltham, Mass. (1967), Chs. 2, 6, 8.

    Google Scholar 

  7. W. E. Pearson andB. S. Baldwin, jr.,A Method for Computing Non-Equilibrium Channel Flow of a Multicomponent Gaseous Mixture in the Near-Equilibrium Region, NASA TN D-3306 (1966).

  8. B. B. Hamel,Two-Fluid Hydrodynamic Equations for a Neutral, Disparate-Mass, Binary Mixture, Phys. Fluids9, 12–22 (1966).

    Google Scholar 

  9. E. R. G. Eckert, A. A. Hayday andW. M. Minkowycz,Heat Transfer, Temperature Recovery and Skin Friction on a Flat Plate with Hydrogen Release into a Laminar Boundary Layer, Int. J. Heat Mass Transfer4, 17–29 (1961).

    Google Scholar 

  10. T. F. Morse,Energy and Momentum Exchange Between Non-Equilibrium Gases, Phys. Fluids6, 1420–1427 (1963).

    Google Scholar 

  11. J. D. Cobine,Gaseous Conductors, Dover Pub., Inc. (New York 1958), p. 48.

    Google Scholar 

  12. H. Schlichting,Boundary Layer Theory (translated byJ. Kestin) McGraw-Hill Book Co., Inc. (New York 1960), pp. 116, 538.

    Google Scholar 

  13. A. A. Hayday, D. A. Bowlers andR. A. McGraw,On Laminar Boundary Layer Flows of a Dissociated Gas Past Catalytic Surfaces, Int. J. Heat Mass Transfer (1967), in press.

  14. S. L. Soo,Dynamics of Multiphase Flow Systems Ind. Eng. Chem. Fundamentals4, 426–433 (1965).

    Google Scholar 

  15. S. L. Soo,Gas-Solid Flow, Proc. Symp. on Single and Multicomponent Flow Processes, Eng. Res. Pub. No. 45 (ed. R. L. Peskin and C. F. Chen) 1–52, Rutgers Univ., New Brunswick, N. J. (1965).

    Google Scholar 

  16. H. W. Emmons andG. J. Brainerd,Temperature Effects in a Laminar Compressible Fluid Boundary Layer Along a Flat Plate, J. appl. Mech.8, A-105 (1941).

    Google Scholar 

  17. J. T. C. Liu,On the Hydrodynamic Stability of Parallel Dusty Gas Flows, Phys. Fluids,8, 1939–1945 (1965).

    Google Scholar 

  18. S. L. Soo,Heat Transfer Processes of Particulate Suspensions, Advanced Heat Transfer (Ed. B. T. Chao and J. C. Chato), University of Illinois Press (In Press) 1968.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soo, s.L. Non-equilibrium fluid dynamics-laminar flow over a flat plate. Journal of Applied Mathematics and Physics (ZAMP) 19, 545–563 (1968). https://doi.org/10.1007/BF01594963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594963

Keywords

Navigation