Skip to main content
Log in

Large deflections of eccentrically loaded arches

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Zusammenfassung

Auf Grund der Hypothesen von Ebenbleiben und Normalität der Querschnitte werden die Differentialgleichungen der nichtlinearen Theorie der Bogenträger abgeleitet und im Falle des schlanken, durch Einzellasten belasteten Kreisbogenträgers mit undehnbarer Mittellinie auf die Form der Pendelgleichung gebracht. Diese Gleichung wird dann benutzt, um die grossen Durchbiegungen und die Spannungsresultierenden eines Zweigelenkkreisbogens, der durch eine lotrechte exzentrische Einzellast belastet wird, zu berechnen. In der Nähe der kritischen Last bewirken kleine Exzentrizitäten bedeutende Grössenänderungen der Spannungsresultierenden und der Durchbiegungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A :

cross-sectional area of curved beam

a :

radius of centroidal circle

E :

modulus of elasticity

e :

eccentricity of the load (Fig. 2)

F :

an arbitrary function

H :

horizontal component of the internal forceR acting on a cross section of the arch rib (Fig. 2)

h P :

horizontal displacement of the loadP (Fig. 2)

I :

moment of inertia of the cross-sectional area

k 2 :

=4p 2/(1+4p 2 sin2ψ0)

L :

span (distance between supports),L=2a sin α

M :

internal bending couple (Figs. 1 and 2)

N :

internal normal tensile force (Figs. 1 and 2)

n :

distributed tangential load (Fig. 1)

P :

downward point load (Fig. 2)

p 2 :

R a 2 /E I

Q :

internal shearing force (Figs. 1 and 2)

q :

distributed normal load (Fig. 1)

R :

internal resultant force (Fig. 2);R 2=H 2+V 2=N 2+Q 2

ν:

radius of curvature of the undeformed centroidal curve

s :

length along the unextended centroidal curve measured from the left support

\(\bar s\) :

length along the unextended centroidal curve measured from the right support

u :

tangential displacement component of the centroidal curve (Fig. 1)

V :

vertical component ofR (Fig. 2)

v P :

vertical displacement of the loadP (Fig. 2)

w :

normal displacement component (Fig. 1)

x, y :

rectangular coordinates of the deformed left portion of the centroidal curve (Fig. 2)

Z :

\( = \{ \iint\limits_A {\left[ {z^2 /(\nu - z)} \right]dA}\} /\nu A\)

z :

normal distance (positive inward) from centroidal curve (Fig. 1)

α:

half subtending angle of the arch (Fig. 2)

β:

angle of rotation of the centroidal curve (Fig. 1)

ε:

extensional strain of the centroidal curve

εz :

extensional strain of the linez=constant

η:

y cosμ−x sinμ

θ:

angle between the tangent to the formed left portion of the centroidal curve and the horizontal (Fig. 2)

λ:

(u′−w)/r, whereu′=du/dø

μ:

angle betweenH andR

ξ:

x cosμ+y sinμ

σ:

normal stress along the centroidal curve

σz :

normal stress along the linez=constant

ϕ:

angle measured from the radius at the left support of the undeformed arch

ψ:

(θ−μ)/2 (Fig. 2)

ω:

(ω′+u)/r, where ω′=dω/dø

References

  1. H. L. Langhaar, A. P. Boresi andD. R. Carver,Energy Theory of Buckling of Circular Elastic Rings and Arches, Proc. 2nd U.S. Natn. Congr. appl. Mech., pp. 437–443 (1954).

  2. N. C. Lind,Elastic Buckling of Symmetrical Arches. Univ. of Illinois Engineering Experiment Station T. R. 3 (1962).

  3. J. V. Huddleston,Finite Deflections and Snap-Through of High Circular Arches, J. appl. Mech.35, 763 (1968).

    Google Scholar 

  4. D. A. DaDeppo andR. Schmidt,Sidesway Buckling of Deep Circular Arches Under a Concentrated Load, J. appl. Mech.36, 325 (1969).

    Google Scholar 

  5. R. Schmidt andD. A. DaDeppo,Buckling of Deep Arches at Large Deflections, AIAA J.7 1182 (1969).

    Google Scholar 

  6. D. A. DaDeppo andR. Schmidt,Nonlinear Analysis of Buckling and Postbuckling Behavior of Circular Arches, Z. angew. Math. Phys.20, 847 (1969).

    Google Scholar 

  7. R. P. Nordgren,On Finite Deflection of an Extensible Circular Ring Segment, Int. J. Solids Struct.2, 223 (1966).

    Google Scholar 

  8. J. G. Eisley,Nonlinear Deformation of Elastic Beams, Rings and Strings, Appl. Mech. Rev.16, 677 (1963).

    Google Scholar 

  9. H. H. Denman andR. Schmidt,Chebyshev Approximation Applied to Large Deflections of Elastica, Ind. Math.18, 63 (1968).

    Google Scholar 

  10. R. Frisch-Fay,Flexible Bars (Butterworths 1962).

  11. T. v.Kármán andM. A. Biot,Mathematical Methods in Engineering (McGraw-Hill 1940).

  12. H. D. Conway,The Nonlinear Bending of Thin Circular Rods, J. appl. Mech.23, 7 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A bar over a letter indicates that the entity pertains to the right portion of the arch. Asterisk indicates the deformed configuration. Primes indicate derivatives with respect to ø.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., DaDeppo, D.A. Large deflections of eccentrically loaded arches. Journal of Applied Mathematics and Physics (ZAMP) 21, 991–1004 (1970). https://doi.org/10.1007/BF01594857

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01594857

Keywords

Navigation