Skip to main content
Log in

Clay gouges in the San Andreas Fault System and their possible implications

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

In the northern and central sections of the San Andreas Fault Zone, and along Calaveras and Hayward faults, clay gouges have been found to occur on the surface and at shallow depths.

It is consistent with the available geochemical data that such gouges can exist at depths down to 10 km. If extensive gouge materials exist in a fault zone then their properties will determine, to a large extent, the behavior of the fault. From known properties of clays in the presence of water we can infer that, in such cases, the tectonic stress and the stress drops for earthquakes will be low and substantial creep will take place before earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. F. Brace andJ. D. Byerlee,California earthquakes: why only shallow focus? Science168 (1970), 1573–1575.

    Google Scholar 

  2. J. N. Brune,Tectonic stress and the spectra of seismic shear waves from earthquakes,75 (1970), 4997.

    Google Scholar 

  3. J. N. Brune, T. L. Henyey andR. F. Roy,Heat flow, and rate of slip along the San Andreas Fault, California, J. Geophy. Res.14 (1969), 3821–3827.

    Google Scholar 

  4. T. Johnson, F. T. Wu andC. Scholz,Source parameters for stick-slip and earthquakes, Science179 (1973), 278–280.

    Google Scholar 

  5. F. T. Wu, K. C. Thomson andH. Kuenzler,Stick-slip propagation velocity and seismic source mechanism. Bull. Seism. Soc. Am.62 (1972), 1621–1628.

    Google Scholar 

  6. R. M. Stesky andW. F. Brace,Estimation of frictional stress on the San Andreas Fault from Laboratory Experiments, Proc. of the Conf. on Tectonic Prob. of the San Andreas Fault system, School of Earth Sciences, Stanford University, California, (1973), 206–214.

  7. C. H. Scholz, P. Molnar andT. Johnson,Detailed studies of frictional sliding of granite and implications for the earthquake mechanism, J. Geophys. Res.77 (1972), 6392–6406.

    Google Scholar 

  8. J. C. Crowell,Displacement along the San Andreas fault, California, Special GSA paper, No. 71 (1962).

  9. R. D. Nason,Investigation of fault creep slippage in northern and central California, Ph.D. Thesis, UCSD (1971), 232 pp.

  10. R. D. Nason,Propagation of fault creep events, NOAA Technical Report ERL 236-ESL21 (1972).

  11. R. C. Waters andC. D. Campbell,Mylonites from the San Andreas fault zone, Am. Jour. of Science29 (1935), 473–503.

    Google Scholar 

  12. S. W. Stewart,Preliminary comparison of seismic travel times and inferred crustal structure adjacent to the San Andreas fault in the Diablo and Gabilan ranges of Central California, Proc. Conf. on Geologic Prob. of San Andreas Fault System, Stanford University, (1968), 218–230.

  13. D. P. McKenzie andJ. N. Brune,Melting on fault planes during large earthquakes, Geophy J.R.A.S.29 (1972), 65–78.

    Google Scholar 

  14. M. Friedman, J. M. Logan andJ. A. Rigert,Glass-indurated quartz gouge in sliding friction experiments on sandstone, Bull. Geol. Soc. Am.85 (1974), 937–942.

    Google Scholar 

  15. G. B. Oakshott,Parkfield earthquakes of June 27–29, 1966, Monterey and San Luis Obispo Counties, California—Preliminary Report, geologic features, Bull. Seismol. Soc. Amer.56 (1966), 961–971.

    Google Scholar 

  16. E. H. Bailey, W. P. Irwin andD. L. Jones,Franciscan and related rocks, and their significance in the geology of western California, Calif. Div. of Mines & Geology Bull.83 (1964).

  17. Millot,Geology of Clays (Springer-Verlag, New York 1970).

    Google Scholar 

  18. C. Scholz, L. Sykes andY. R. Aggarwal,The physical basis for earthquake prediction,Science 181 (1973), 803–810.

    Google Scholar 

  19. R. E. Grim,Clay Mineralogy (McGraw-Hill Book Co., 1968), p. 596.

  20. F. A. Mumpton andR. Roy,The influence of ionic substitution on the hydrothermal stability of montmorillonites, National Res. Council Pub.456 (1956), 337–339.

    Google Scholar 

  21. L. L. Ames andL. B. Sands,Factors effecting maximum hydrothermal stability in montmorillonites, Am. Mineralogist43 (1958), 641–649.

    Google Scholar 

  22. C. L. Blatter,The interaction of clay minerals with distilled and saline solutions at elevated temperatures, Unpublished Ph.D. Thesis, State University of New York at Binghamton, New York (1974).

    Google Scholar 

  23. I. K. Lee andO. G. Ingles,Strength and deformation of soils and rocks, inSoil Mechanics, Selected Topics (American Elsevier Publishing Co., Inc., New York 1968).

    Google Scholar 

  24. R. E. Olson andJ. F. Parola,Dynamic shearing properties of compacted clay, Int. Symp. on Wave Propagation and Dynamic Properties of Earth Material, Univ. of N. Mexico Press (1961), 173–182.

  25. C. R. Scott,An introduction to Soil Mechanics and Foundations (McLaren, London 1969).

    Google Scholar 

  26. A. Nur,Dilatancy, pore fluids, and premonitory variations of t s /t p travel times, Bull. Seismol. Soc. Amer.62 (1972), 1217.

    Google Scholar 

  27. R. C. Mielenz andM. E. King,Physical-chemical properties and engineering performance of clays, clays and clay technology, California Div. of Mines Bull.169 (1965), 196–266.

    Google Scholar 

  28. R. D. Nason,Fault creep and earthquakes on the San Andreas Fault, Proc. of the Conference on Tectonic Problems of the San Andreas Fault System, edited byR. L. Kovach andA. Nur, Geol. Soc. vol. XIII, Stanford University (1973), 275–285.

    Google Scholar 

  29. C. R. Allen andS. W. Smith,Pre-earthquake and post-earthquakes surficial displacements, Bull. Seism. Soc. Am.56 (1966), 966–967.

    Google Scholar 

  30. H. Borowicka,The influence of the colloidal content on the shear strength of clay. Sixth Int. Conf. on Soil Mech. and Foundation Engineering, Vol. 1 (University of Toronto Press, 1965).

  31. J. D. Byerlee andW. F. Brace,Stick-slip, stable sliding and earthquakes—effects of rock type, pressure, strain rate and stiffness, J. Geophys. Res.73 (1968), 6031–6037.

    Google Scholar 

  32. B. Velde,The compositional foin muscovite-pyrophyllite at moderate temperatures and pressures, Bull. Soc. Franc. Miner. Crist.92 (1969), 360–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F.T., Blatter, L. & Roberson, H. Clay gouges in the San Andreas Fault System and their possible implications. PAGEOPH 113, 87–95 (1975). https://doi.org/10.1007/BF01592901

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01592901

Keywords

Navigation