Skip to main content
Log in

Energy flows in a vortex tube

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The energy separation within a vortex tube filled with turbulent compresible fluid is investigated with an order-of-magnitude analysis of the energy equation. The physical processes corresponding to the important terms are: a heat flux due to turbulent mixing of the compressible fluid through radial pressure and temperature gradients, a flux of total energy produced by Archimedean forces, and work fluxes associated with the two most important Reynolds' stresses. All these fluxes will commonly be outwards and will tend to cool the vortex core. Experimental results are used to estimate, the relative magnitudes of the contributions. The Archimedean effect seems to be the least important.

Zusammenfassung

Die Energieverteilung in einem mit turbulenter kompressibler Flüssigkeit gefüllten Wirbelrohr wird durch Berechnung der Gliedergrösse der Energiegleichung untersucht. Die physikalischen Vorgänge, die den wichtigen Gliedern entsprechen, sind folgende: ein Wärmefluss, veranlasst durch turbulente Mischung der kompressible Flüssigkeit infolge der radialen Druck- und Temperaturgradienten; ein Fluss des Gesamtwärmeinhaltes, verursacht durch die Schwimmkraft; und die Arbeitsflüsse, die von den beiden wichtigsten Reynoldsschen scheinbaren Spannungen abhängen. Alle diese Flüsse sind gewöhnlich nach aussen gerichtet und dienen zum Kühlen des Wirbelkerns. Die experimentellen Ergebnisse werden zu einer Abschätzung der Grösse dieser Beiträge gebraucht. Der Schwimmkrafteffekt scheint am wenigsten wichtig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Reynolds,On the Dynamics of Turbulent Vortical Flow, Z. angew. Math. Phys.,12, 149 (1961).

    Google Scholar 

  2. R. Westley,A Bibliography and Survey of the Vortex Tube, Note Nr. 9, College of Aeronautics, Cranfield (1954).

    Google Scholar 

  3. E. H. Otten,Producing Cold Air — Simplicity of the Vortex-tube Method, Engineering186, 4821, 154 (1958).

    Google Scholar 

  4. H. Sprenger,Über thermische Effekte in Resonanzrohren, Mitt. Inst. Aerodyn., ETH, Zürich, Nr. 21 (1954).

    Google Scholar 

  5. R. Westley,Vortex Tube Performance Data Sheets, Note Nr. 67, College of Aeronautics, Cranfield (1957).

    Google Scholar 

  6. J. P. Hartnett andE. R. G. Eckert,Experimental Study of the Velocity and Temperature Distribution in a High-velocity Vortex-type Flow, Trans. Amer. Soc. Mech. Eng.,79, 751 (1957).

    Google Scholar 

  7. J. E. Lay,An Experimental and Analytical Study of Vortex-Flow Temperature Separation by Superposition of Spiral and Axial Flows, Trans. Amer. Soc. Mech. Eng.,81, [C] 3, 202, 213 (1959).

    Google Scholar 

  8. W. A. Scheller andG. M. Brown,The Ranque-Hilsch Vortex Tube, Ind. Eng. Chem.49, 1013 (1957).

    Google Scholar 

  9. R. G. Deissler andM. Perlmutter,An Analysis of the Energy Separation in Laminar and Turbulent Compressible Vortex Flows, Proc. 1958 Heat Transfer and Fluid Mechanics Institute, Stanford University, Palo Alto, California.

  10. J. O. Hinze,The Effect of Compressibility on the Turbulent Transport of Heat in a Stably Stratified Atmosphere, Proc. Symposium onAtmospheric Diffusion and Air Pollution, Academic Press, Vol. 6, inAdvances in Geophysics, (1959), p. 229.

  11. C. D. Pengelley,Flow in a Viscous Vortex, J. Appl. Phys.,28, 1, 86 (1957).

    Google Scholar 

  12. N. Rott,On the Viscous Core of a Line Vortex, Z. angew. Math. Phys.9b, 5/6, 543 (1958);10, 1, 73 (1959).

    Google Scholar 

  13. C. D. Fulton,Ranque's Tube, Refrig. Eng.58, 5, 473 (1950).

    Google Scholar 

  14. R. Kassner andE. Knoernschild,Friction Laws and Energy Transfer in Circular Flow, Tech. Rep. Nr. F-TR-2198-ND, GS-USAF Wright Patterson AF Base, Nr. 78 (1947).

  15. A. J. Reynolds,On Energy Separation by Aerodynamic Processes, J. Aero/ Space Sciences,28, 3, 244 (1961).

    Google Scholar 

  16. C. H. B. Priestley andW. C. Swinbank,Vertical Transport of Heat by Turbulence in the Athmosphere, Proc. Roy. Soc. Lond.,A 189, 543 (1947).

    Google Scholar 

  17. A. Einstein, Ann. Phys. Lpz.,17, 549 (1905).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, A.J. Energy flows in a vortex tube. Journal of Applied Mathematics and Physics (ZAMP) 12, 343–357 (1961). https://doi.org/10.1007/BF01591284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591284

Keywords

Navigation