Skip to main content
Log in

Thepin structure employed as current amplifier

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

Injection of excess carriers into thei region of a forward biasedpin diode diminishes proportionally its resistivity (primary circuit). Resistivity variations in thei region are used to control higher currents and powers in the secondary circuit. This basic idea is developed quantitatively for a simplified symmetrical model of thepin structure in a stationary regime and then generalized for the asymmetrical case. The frequency characteristics of the electronic device are studied. For demonstration of the theoretical results thepin structure in silicon with known parameters is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2d [m]:

length ofi region

D [m2 s−1]:

ambipolar diffusion constant

e [C]:

electron charge

E 2 [Vm−1]:

electric field strength iny direction

i 1 [Am−2]:

current density inx direction

i 2 [Am−2]:

current density iny direction

i m [Am−2]:

current density due to recombination of carriers ini region

i 1ef ,i 2ef [Am−2]:

effective values of currentsi 1,i 2

i ns ,i ps [Am−2]:

saturated current densities from the heavily dopedn, p regions

i :

intrinsic region

I [A]:

total current throughp-n junction

I 1 [A]:

total current in pin diode

I 2 [A]:

current in secondary circuit

k[J grad−1]:

Boltzmann's constant

L=√() [m]:

ambipolar diffusion length of carriers in middle region

n(x) [m−3]:

excess electron concentration in middle region

¯n [m−3]:

average value of electron concentration in middle region

n i [m−3]:

intrinsic electron concentration

n A [m−3]:

acceptor concentration inp region

n D [m−3]:

donor concentration inn region

p(x) [m−3]:

excess hole concentration in middle region

q [m2]:

area of electrodes 3 and 4

Q [C]:

charge stored ini region

R [m−3 s−1]:

recombination rate

s [m]:

width of diode

t [m]:

thickness of diode

T [K]:

absolute temperature

U [V]:

voltage acrossp-n junction

U 1 [V]:

voltage acrosspin diode

U 2 [V]:

voltage across terminals of secondary circuit

U m [V]:

voltage drop acrossi region

V D [V]:

voltage drop acrossn — i andp — i junctions at zero load

W 1 [W]:

power inpin diode circuit

W 2 [W]:

power in secondary circuit

x [m]:

distance from center of diode

α :

coefficient in current amplification factor

ϕ [rad]:

phase shift of diode current with respect to applied voltage

τ [s]:

life time of excess carriers ini region

μ [m2 V−1 s−1]:

carrier mobility ini region in the symmetrical model

μ n [m2 V−1 s−1]:

electron mobility ini region

μ p [m2 V−1 s−1]:

hole mobility ini region

σ−1 m−1]:

conductivity

References

  1. Hall R. N., Proc. Instr. Radio Engers40 (1952), 1512.

    Google Scholar 

  2. Kleinmann D. A., Bell. Syst. Tech. J.35 (1956), 685.

    Google Scholar 

  3. Rose A., J. Appl. Phys.35 (1964), 2664.

    Google Scholar 

  4. Shockley W., Bell. Syst. Tech. J.28 (1949), 435.

    Google Scholar 

  5. Herlet A., Z. Naturf.11a (1956), 498.

    Google Scholar 

  6. Fletcher N. A., Proc. Instr. Radio Engers45 (1957), 862.

    Google Scholar 

  7. Jonscher A. K., J. Electron. Control5 (1958), 1.

    Google Scholar 

  8. Howard R. N., Johnson G. W., Solid-St. Electron.8 (1965), 275.

    Google Scholar 

  9. Herlet A., Solid-St. Electron.11 (1968), 717.

    Google Scholar 

  10. Spenke E., Solid-St. Electron.11 (1968), 1119.

    Google Scholar 

  11. Herlet A., Spenke E., Z. angew. Phys.7 (1955), 99, 149, 195.

    Google Scholar 

  12. Hoffmann A., Schuster K., Solit-St. Electron.7 (1964), 717.

    Google Scholar 

  13. Roulston D. J., Varshney R. C., Electron. letters5 (1969), 548.

    Google Scholar 

  14. Benda M., Spenke E., Proc. IEEE55 (1967), 1331.

    Google Scholar 

  15. Benda M., Hoffmann A., Spenke E., Solid-St. Electron.8 (1965), 887.

    Google Scholar 

  16. Hoffmann A., Spenke E., Solid-St. Electron.8 (1965), 693.

    Google Scholar 

  17. Varshney R. L., Roulston D. J., Solid-St. Electron.13 (1970), 1081.

    Google Scholar 

  18. Bube R. H., Proc. IRE43 (12), (1955), 1836.

    Google Scholar 

  19. Moss T. S., Optical properties of semiconductors, London 1959.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koňák, Č., Koňáková, A. Thepin structure employed as current amplifier. Czech J Phys 24, 1008–1017 (1974). https://doi.org/10.1007/BF01591052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591052

Keywords

Navigation