Skip to main content
Log in

Isothermal flow behind a shock wave propagating in the solar wind

  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

A Parker-type blast wave, which is headed by a strong shock, driven out by a propelling contact surface, moving into an ambient solar wind having a strictly inverse square law radial decay in density, is studied. Assuming the self-similar flow behind the shock to be isothermal, approximate analytical and exact numerical solutions are obtained. There is a good agreement between the approximate analytical and exact numerical solutions. It is observed that the mathematical singularity in density at the contact surface is removed for the isothermal flow.

Zusammenfassung

Es wird eine Detonationswelle vom Parker-Typ studiert, vorne begrenzt von einem starken Stoss; sie wird von einer Kontaktfläche getrieben, in einem Sonnenwind mit radialem Dichteabfall mit dem inversen Quadrat des Abstandes. Unter der Annahme, dass die ähnliche Strömung hinter dem Stoss isotherm ist, werden angenäherte analytische und exakte numerische Lösungen erhalten, die gute Uebereinstimmung zeigen. Man findet, dass die mathematische Singularität in der Dichte bei der Kontaktfläche für isotherme Strömung verschwindet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Parker, Astrophys. J.133, 1014 (1961).

    Google Scholar 

  2. E. N. Parker,Interplanetary Dynamical Processes, Interscience Publ., New York (1963).

    Google Scholar 

  3. M. Simon andW. I. Axford, Planetary Space Sci.14, 901 (1966).

    Google Scholar 

  4. T. S. Lee andW. W. Balwanz, Solar Phys.4, 240 (1968).

    Google Scholar 

  5. T. S. Lee andT. Chen, Planetary Space Sci.16, 1483 (1968).

    Google Scholar 

  6. T. S. Lee, T. Chen, andW. W. Balwanz, (abstract) EOS51, 414 (1970).

    Google Scholar 

  7. V. P. Korobeinikov, Solar Phys.7, 463 (1969).

    Google Scholar 

  8. A. J. Hundhausen,Coronal Expansion and Solar Wind, Springer-Verlag, Berlin (1972).

    Google Scholar 

  9. D. D. Laumbach andR. F. Probstein, J. Fluid Mech.35, 53 (1969).

    Google Scholar 

  10. D. D. Laumbach andR. F. Probstein, J. Fluid Mech.40, 833 (1970).

    Google Scholar 

  11. M. P. Ranga Rao andS. C. Purohit, Int. J. Engng. Sci.10, 249 (1972).

    Google Scholar 

  12. M. P. Ranga Rao andS. C. Purohit, Int. J. Engng. Sci.10, 963 (1972).

    Google Scholar 

  13. M. P. Ranga Rao andB. V. Ramana, Int. J. Engng. Sci.11, 1035 (1973).

    Google Scholar 

  14. M. P. Ranga Rao andB. V. Ramana, Int. J. Engng. Sci.12, 1317 (1973).

    Google Scholar 

  15. L. I. Sedov,Similarity and Dimensional Methods in Mechanics, Academic Press, New York (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranga Rao, M.P., Ramana, B.V. Isothermal flow behind a shock wave propagating in the solar wind. Journal of Applied Mathematics and Physics (ZAMP) 26, 289–297 (1975). https://doi.org/10.1007/BF01590541

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01590541

Keywords

Navigation