Wärme - und Stoffübertragung

, Volume 26, Issue 3, pp 175–179 | Cite as

Impingement heat transfer from wedge surface

  • O. Faruque
  • R. K. Brahma
  • R. C. Arora


An experimental investigation is made to study the heat transfer characteristics of slot jet impingement on a wedge whose included angle is 90°. Local and average heat transfer rates from the wedge surfaces have been measured. The experiments have been conducted with isothermal wedge surface at Reynolds numbers ranging from 5 680 to 16 600. The effects of varying the flow rate, width of the nozzle, distance of the wedge vertex from the nozzle exit, eccentricity of the wedge vertex to the jet axis on the flow properties of the fluid have been investigated. A correlation has been proposed considering the relevant dimensionless parameters and then compared with experimental data.


Heat Transfer Reynolds Number Heat Transfer Rate Nozzle Exit Heat Transfer Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



surface area of the wedge


breadth of the wedge or nozzle


face length of the wedge


specific heat at constant pressure


Grashof number


height of the wedge=C sinφ


local heat transfer coefficient

\(\bar h\)

average heat transfer coefficient


free convective heat transfer coefficient


thermal conductivity


distance from the nozzle exit to the wedge vertex


free convection Nusselt number


local Nusselt number=hW/K

\(\overline {Nu} _w\)

average Nusselt number=\(\bar h\)W/K


Prandtl number=μc p /K


heat loss due to forced convection


heat input


heat loss due to free convection


heat loss due to conduction and radiation


Reynolds number=u j W/ν a

\(\overline T\)

average temperature in °C


jet temperature in °C


ambient air temperature in °C


mean temperature=(\(\overline T\)+T a )/2


mean velocity in m/s


average jet exit velocity in m/s


nozzle width


distance measured from wedge vertex


angle between upper surface of the wedge and jet center line


angle between lower surface of the wedge and jet center line


eccentricity of the wedge vertex with the jet center line


absolute viscosity


kinematic viscosity

Wärmeübertragung einer Strömung, die auf einen Keil aufprallt


Ein experimenteller Versuch wurde durchgeführt, um die Wärmeübertragungseigenschaften bei der Spaltung eines Strahls, die beim Aufprall auf einen rechtwinkligen Keil entsteht, zu untersuchen. Gemessen wurde die lokale und mittlere Wärmeübertragungsrate der Keiloberfläche. Dieses Experiment wurde mit einer isothermen Keiloberfläche bei einer Reynolds-Zahl zwischen 5 680–16 600 durchgeführt. Untersucht wurden die Einwirkungen bei der Änderung der Strömungsrate, Düsenbreite, Abstand zwischen Keilscheitel und Düsenausgang, Exzentrizität von Keilscheitel und Strahlachse, sowie die Strömungseigenschaften des Fluids. Unter Betracht der maßgebenden dimensionslosen Parameter wurden Berechnungen durchgeführt und diese mit den experimentellen Daten verglichen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Falkner, V. M.; Skan, S. W.: Some approximate solutions of the boundary layer equations. Phil. Mag. 12 (1931) 896–965Google Scholar
  2. 2.
    Hartree, D. R.: On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33 (1921) 223–239Google Scholar
  3. 3.
    Stewartson, K.: Further solutions of the Falkner-Skan equation. Proc. Camb. Phil. Soc. 50 (1954) 454–465Google Scholar
  4. 4.
    Morgan, G. W.; Pipkin, A. C.; Warner, W. H.: On heat transfer in laminar boundary layer flows of liquids having a very small Prandtl number. J. Aeronaut. Sci. 25 (1958) 173–180Google Scholar
  5. 5.
    Spalding, D. B.; Evans, H. L.: Mass transfer through laminar boundary layers. 3. Similar solutions to the b-equation. Int. J. Heat Mass Transfer 2 (1961) 314–341Google Scholar
  6. 6.
    Levy, S.: Heat transfer to constant property laminar boundary layer flows with power function free-stream velocity and wall temperature variation. J. Aeronaut. Sci. 19 (1952) 341–348Google Scholar
  7. 7.
    Chao, B. T.; Cheema, L. S.: Forced convection in wedge flow with non-isothermal surface. Int. J. Heat Mass Transfer 14 (1971) 1363–1375Google Scholar
  8. 8.
    Lee, S. Y.; Ames, W. F.: Similarity solutions for non-Newtonian fluids. AIChE J. 12 (1966) 700–708Google Scholar
  9. 9.
    Chen, J. L. S.; Radulovic, P. T.: Heat transfer in non-Newtonian flow past a wedge with non-isothermal surface. Trans. ASME J. Heat Transfer 95 (1973) 498–504Google Scholar
  10. 10.
    Chen, Y.: Heat transfer of a laminar flow passing a wedge at small Prandtl number; a new approach. Int. J. Heat Mass Transfer 28 (1985) 1517–1523Google Scholar
  11. 11.
    Jeng, D. R.; Lee, M. H.; De Witt, K. J.: Convective heat transfer through boundary layers with arbitrary pressure gradient and non-isothermal surfaces. Int. J. Heat Mass Transfer 21 (1978) 499–509Google Scholar
  12. 12.
    Domkundwar, S.: A course in heat and mass transfer. Delhi-Jullundur: J. C. Kapoor 1979, p. 12.14.Google Scholar
  13. 13.
    Cebeci, T.; Bradshaw, P.: Physical and computational aspects of convective heat transfer. New York: Springer 1984, p. 80.Google Scholar
  14. 14.
    Yamada, H.; Nakamuda, I.: Experiments on a two-dimensional impinging jet on wedge. Bull. JSME No. 252, 29 (1986) 1726–1731Google Scholar
  15. 15.
    Schuh, H.; Person, B.: Heat transfer on circular cylinders exposed to free-jet flow. Int. J. Heat Mass Transfer 7 (1964) 1257–1271Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • O. Faruque
    • 2
  • R. K. Brahma
    • 1
  • R. C. Arora
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia
  2. 2.Bangladesh Institute of TechnologyChittagongBangladesh

Personalised recommendations