Skip to main content
Log in

A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate

Laminares Grenzschichtmodell des Wärmeübergangs von einem ungleichmäßigen ebenen auf eine bewegte Platte auftreffenden Strahl

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

A theoretical model is developed of planar jet impingement heat transfer on a moving plate. Boundary layer equations in their integral forms are used in order to include, both near and away from the stagnation line, the effects of surface motion directed perpendicular to the jet plane, an arbitrary surface temperature variation, and nonuniform jet discharge velocity profiles. The validity and accuracy of the approximate solution is assessed by comparison to an exact solution restricted to regions near the stagnation line. Results indicate that the influence of a nonuniform jet discharge velocity decreases with distance from the stagnation line. Surface motion affects heat transfer at regions away from the stagnation line, but has little influence near the stagnation line when the surface temperature is constant.

Zusammenfassung

Ein theoretisches Modell für die Wärmeübertragung beim Auftreffen eines ebenen Strahls auf eine bewegte Platte wird hier entwickelt. Es werden Grenzschichtgleichungen in Integralform benutzt um, sowohl in der Nähe als auch in einiger Entfernung der Staulinie, die Effekte der Oberflächenbewegung senkrecht zum Strahl, bei willkürlichen Veränderungen der Oberflächentemperatur und ungleichmäßigen Strahlgeschwindigkeitsprofilen zu beschreiben. Die Gültigkeit und Genauigkeit der approximativen Lösung wird beurteilt in dem sie mit der exakten Lösung für den Bereich in der Nähe der Staulinie verglichen wird. Die Ergebnisse zeigen, daß der Einfluß einer ungleichmäßigen Strahlaufprallgeschwindigkeit mit zunehmenden Abstand von der Staulinie abnimmt. Bewegungen der Oberfläche beeinflussen den Wärmeübergang in Bereichen außerhalb der Staulinie, aber haben einen kleinen Einfluß in der Nähe der Staulinie wenn die Oberflächentemperatur konstant gehalten wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

c p :

specific heat at constant pressure

C :

freestream velocity gradient near stagnation line

\(\bar C\) :

dimensionless velocity gradient =w C/v j

h :

heat transfer coefficient

H :

vertical distance above plate to nozzle opening

k :

thermal conductivity

Nu w :

jet Nusselt number =h w/k

Nu * :

ratio of local Nusselt number for moving plate to local Nusselt number for stationary plate

P :

static pressure

\(\bar P\) :

dimensionless pressure=(PP )/(1/2)ϱ v 2 j

Pr :

Prandtl number =μ c p /k

q w :

wall heat flux

Re w :

Reynolds number=v j w/v

T :

temperature

T p :

local surface temperature of plate

T :

freestream temperature (jet temperature)

u :

x-component of velocity

u :

x-component of velocity beyond velocity boundary layer

\(\bar u_\infty\) :

velocity ratio=u /v j (Eq. (20))

v j :

jet impingement velocity along jet centerline

v p :

velocity of plate

\(\bar v_p\) :

velocity ratio=v p /v j

w :

jet width

x * :

value for\(\bar x\) where\(\bar P = 0\) (Eq. (19))

x :

horizontal distance from stagnation line (Fig. 2)

\(\bar x\) :

dimensionless position =x/w

y :

vertical position above plate (Fig. 2)

γ :

boundary layer thickness ratio=δ/Δ

Γ :

boundary layer thickness ratio=Δ/δ

δ :

velocity boundary layer thickness

\(\bar \delta\) :

dimensionless velocity boundary layer thickness=δ/tw

Δ :

thermal boundary layer thickness

\(\bar \Delta\) :

dimensionless thermal boundary layer thickness=Δ/tw

τ xy :

shear stress =μ ∂u/∂y

θ :

dimensionless surface temperature of plate=(T p T )/(T p0 T )

μ :

dynamic viscosity

ν :

kinematic viscosity=μ/ϱ

ϱ :

mass density

ψ :

coefficient related to boundary layer growth (Eqs. (10), (11), (14)–(17))

0:

pertaining to stagnation line

p :

plate

∞:

jet free stream

References

  1. Kohring, F. C.: Waterwall water-cooling systems. Iron and Steel Engineer (June 1985) 30–36

  2. Martin, H.: Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer 13 (1977) 1–60

    Google Scholar 

  3. Hansen, A. G.: Similarity analyses of boundary value problems. Englewood Cliffs, NJ: Prentice-Hall 1964

    Google Scholar 

  4. Levy, S.: Heat transfer to constant-property laminar boundary-layer flows with power-function free-stream velocity and wall-temperature variation. J. Aero. Sci. 19 (1952) 341–348

    Google Scholar 

  5. Zumbrunnen, D. A.; Incropera, F. P.; and Viskanta, R.: Convective heat transfer distributions on a plate cooled by planar water jets. Trans. Am. Soc. Mech. Engrs. J. Heat Transfer 111 (1989) 889–896

    Google Scholar 

  6. White, F. M.: Viscous fluid flow. New York: McGraw-Hill 1974

    Google Scholar 

  7. Scholtz, M. T.; Trass, O.: Mass transfer in a nonuniform impinging jet. A.I.Ch.E. J. 16 (1970) 82–96

    Google Scholar 

  8. Sparrow, E. M.; Lee, L.: Analysis of flow field and impingement heat/mass transfer due to a nonuniform slot jet. Trans. Am. Soc. Mech. Engrs. J. Heat Transfer 97 (1975) 191–197

    Google Scholar 

  9. Zumbrunnen, D. A.: Convective heat and mass transfer in the stagnation region of a planar jet impinging on a moving surface. Trans. Am. Soc. Mech. Engrs. J. Heat Transfer 113 (1991) 563–570

    Google Scholar 

  10. Zumbrunnen, D. A.; Incropera, F. P.; Viskanta, R.: Method and apparatus for measuring heat transfer distributions on moving and stationary plates cooled by a planar liquid jet. Exp. Thermal Fluid Sci. 3 (1990) 202–213

    Google Scholar 

  11. Schlichting, H.: Boundary-layer theory, 7th Ed., New York: McGraw-Hill 1979

    Google Scholar 

  12. Arpaci, V. S.; Larsen, P. S.: Convection heat transfer. Englewood Cliffs, NJ: Prentice-Hall 1984

    Google Scholar 

  13. Miyazaki, H.; Silberman, E.: Flow and heat transfer on a flat plate normal to a two-dimensional laminar jet issuing from a nozzle of finite height. Int. J. Heat Mass Transfer 15 (1972) 2097–2107

    Google Scholar 

  14. Evans, H. L.: Mass transfer through laminar boundary layers — 7. Further similar solutions to the B-equation for the caseB=0. Int. J. Heat Mass Transfer 5 (1962) 35–57

    Google Scholar 

  15. Sparrow, E. M.; Wong, T. C.: Impingement transfer coefficients due to initially laminar slot jets. Int. J. Heat Mass Transfer 18 (1975) 597–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumbrunnen, D.A., Incropera, F.P. & Viskanta, R. A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate. Wärme- und Stoffübertragung 27, 311–319 (1992). https://doi.org/10.1007/BF01589969

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589969

Keywords

Navigation