Skip to main content
Log in

Thermal axially symmetric charged-particle beams in the paraxial region

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Conclusion

The formalism of the elementary solution of the Vlasov kinetic equation described in this paper enables us to investigate rather easily macroscopic properties of thermal charged-particle beams in the paraxial region. The distribution function can be found readily for plane electron or ion sources perpendicular to the axis of the beam with arbitrary velocity distribution. Plane sources with inhomogeneous emissivities are included into this conception if the phase trajectories describe precisely enough the considered situation. In principle, it is possible to construct the distribution function for any geometric configuration with axial symmetry (in the paraxial region) with the aid of the elementary solution and the convolution.

The method explained in this paper can be used also to solve some problems from the classical electron optics, e.g. chromatic aberration. This is so because we take into account the whole phase space and not only the transversal velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langmuir I., Compton K. T.: Rev. Mod. Phys.3 (1931) 237.

    Google Scholar 

  2. Cutler C. C., Hines M. E.: Proc. IRE43 (1955) 307.

    Google Scholar 

  3. Vejvodová J.: Czech. J. Phys.6 (1957) 656; J. British I R E21 (1961) 337.

    Google Scholar 

  4. Harker K. J.: J. Appl. Phys.28 (1957) 645.

    Google Scholar 

  5. Ashkin A.: J. Appl. Phys.29 (1958) 1594.

    Google Scholar 

  6. Hermann G.: J. Appl. Phys.29 (1958) 127.

    Google Scholar 

  7. Kirstein P. T.: J. Appl. Phys.34 (1963) 3479.

    Google Scholar 

  8. Pierce J. R., Walker L. R.: J. Appl. Phys.24 (1953) 1328.

    Google Scholar 

  9. Caroll J. E.: J. Electron. Control14 (1963) 403.

    Google Scholar 

  10. Langmuir D. B.: Proc. I R E25 (1937) 977.

    Google Scholar 

  11. Pierce J. R.: J. Appl. Phys.10 (1939) 715.

    Google Scholar 

  12. Ash E. A.: J. Appl. Phys.35 (1964) 298.

    Google Scholar 

  13. Amboss K.: Adv. Electronics and Electron Phys.26 (1969) 1.

    Google Scholar 

  14. Clemmow P. C., Dougherty J. P.: Electrodynamics of Particles and Plasmas, Addison-Wesley Publishing Company, New York, 1969, p. 231.

    Google Scholar 

  15. Krall N. A., Trivelpiece A. W.: Principles of Plasma Physics, McGraw-Hill Book Company, New York, 1973, p. 486.

    Google Scholar 

  16. Dobracov L. D.: Elektronnaya i ionnaya emissia, Moskva, 1952, p. 93.

  17. Kirstein P. T. et al.: Space-Charge Flow, McGraw-Hill Book Company, New York, 1967.

    Google Scholar 

  18. Amboss K.: IEEE Trans. Electron DevicesII (1964) 479.

    Google Scholar 

  19. Amboss K., Gallagher H.:in Microwave Tubes (Proc. Inter. Conf. Microwave Tubes, 5th, Paris, 1964) Academic Press, New York, 1965, p. 364.

    Google Scholar 

  20. Korenev B. G.: Vvedeniye v teoriyu besselevykh funkcii, Nauka, Moskva, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to thank his colleagues in the Department of Electronics and Vacuum Physics for numerous helpful discusisons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, A. Thermal axially symmetric charged-particle beams in the paraxial region. Czech J Phys 33, 401–428 (1983). https://doi.org/10.1007/BF01589874

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589874

Keywords

Navigation