Skip to main content
Log in

CP violation with beautiful baryons

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

CP violation can be studied in modes of charmed or bottom baryons when a decay process is compared with its charge-conjugated partner. It can show up as a rate asymmetry and in a study of other decay parameters. Neither tagging nor time-dependences are required to observeCP violation with modes of baryons, in contrast to the conventionalB 0 modes. Numerous modes of bottom baryons have the potential to show largeCP-violating effects within the Standard Model. Those effects can be substantial for modes with aD 0, which is seen in a final state that can also be fed from a\(\bar D^0 \). For instance, a comparison of theΛ bΛ 0CP with the\(\bar \Lambda _b \to \bar \Lambda D_{CP}^0 \) process can show sizeableCP violation. HereD oCP denotesCP eigenstates ofD 0, which occur at a few percent. Six related processes, such asΛ bΛD 0,\(\Lambda _b \to \Lambda \bar D^0 \),Λ bΛ 0CP , and their charge-conjugated counterparts, can extract ϕ, which is the most problematic angle of the unitarity triangle and which is conventionally probed with theB s→ρ0 K S asymmetry. HereD 0 andD −0 are identified by their charged kaon or lepton. We predictB(Λ bΛD 0)∼10−5, thusB(Λ bΛ 0CP )∼10−7. Under favourable circumstances,CP violation can occur at the few tens of percent level. Thus 102–103 Λ bΛ 0CP decays start probing ϕ. Tables list many additional modes with typical branching ratios at the 10−5–10−6 level, with large detection efficiencies (in contrast to theD 0CP ), and with potentially largeCP-violating effects, such as Ξ 0b →ΛΨ, Λϕ, ΛK*0; Ξ b →ΛK(*)−, ΞKs, ΞK*0, Ω b →Ξφ, Ξρ0, ΛK(*)−, ΩKs, ΩK*0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay: Phys. Rev. Lett. 13 (1964) 138

    Google Scholar 

  2. I.I. Bigi, V.A. Khoze, N.G. Uraltsev, A.I. Sanda: in:CP violation, p. 175. C. Jarlskog (ed.). Singapore: World Scientific 1989

    Google Scholar 

  3. J.D. Bjorken: Nucl. Phys. B (Proc. Suppl.) 11 (1989) 325; I.I. Bigi, B. Stech: in Proceedings of the Workshop on High Sensitivity Beauty Physics at Fermilab, Batavia, IL, 1987, p. 239. A.J. Slaughter, N. Lockyer, M. Schmidt (eds.)

    Google Scholar 

  4. T.D. Lee, C.N. Yang: Phys. Rev. 108 (1957) 1645

    Google Scholar 

  5. J.W. Cronin, O.E. Overseth: Phys. Rev. 129 (1963) 1795

    Google Scholar 

  6. W. Koch: in: Analysis of scattering and decay, p. 231. M. Nikolic (ed.). New York, London, Paris: Gordon and Breach 1968

    Google Scholar 

  7. T.D. Lee: in: Preludes in theoretical physics, p. 5. A. De-Shalit, H. Feshbach, L. Van Hove (eds.). Amsterdam: North-Holland 1966

    Google Scholar 

  8. O.E. Overseth, and S. Pakvasa: Phys. Rev. 184 (1969) 1663.CP-violating effects with strange hyperons have been the subject of many later investigations; see for instance: A. Baltas et al.: Nuovo Cimento 45A (1978) 493; L.-L. Chau, H.-Y. Cheng: Phys. Lett. 131B (1983) 202; T. Brown, S.F. Tuan, S. Pakvasa: Phys. Rev. Lett. 51 (1983) 1823; J.F. Donoghue, S. Pakvasa: Phys. Rev. Lett. 55 (1985) 162; J.F. Donoghue, B.R. Holstein, G. Valencia: Int. J. Mod. Phys. A2 (1987) 319; Phys. Lett. 178B (1986) 319; J.F. Donoghue, X.G. He, S. Pakvasa: Phys. Rev. D34 (1986) 833; G. Bassompierre: Nuovo Cimento 101A (1989) 307; X.G. He, H. Steger, G. Valencia: Phys. Lett. B272 (1991) 411; N. Hamann et al.: Hyperon study working group Report, CERN/SPSLC report, in progress

    Google Scholar 

  9. M. Bander, D. Silverman, A. Soni: Phys. Rev. Lett. 43 (1979) 242

    Google Scholar 

  10. H. Simma, G. Eilam, D. Wyler: Nucl. Phys. B352 (1991) 367

    Google Scholar 

  11. J.-M. Gérard, W.S. Hou: Phys. Lett. B253 (1991) 478; Phys. Rev. D43 (1991) 2909

    Google Scholar 

  12. H. Simma, D. Wyler: Phys. Lett. B272 (1991) 395

    Google Scholar 

  13. M. Kobayashi, T. Maskawa: Prog. Theor. Phys. 49 (1973) 652

    Google Scholar 

  14. M. Gronau, D. London: Phys. Lett. B253 (1991) 483

    Google Scholar 

  15. M. Gronau, D. Wyler: Phys. Lett. B265 (1991) 172

    Google Scholar 

  16. I. Dunietz: Phys. Lett. B270 (1991) 75

    Google Scholar 

  17. I. Dunietz: in: B Decays, p. 393. S. Stone (ed.). Singapore: World Scientific 1992

    Google Scholar 

  18. I. Dunietz, A. Snyder: Phys. Rev. D43 (1991) 1593; see especially the longer version, SLAC report, SLAC-PUB-5234, 1990 (unpublished)

    Google Scholar 

  19. I. Dunietz, H. Quinn, A. Snyder, W. Toki and H.J. Lipkin: Phys. Rev. D43 (1991) 2193

    Google Scholar 

  20. J.M. Soares: Nucl. Phys. B367 (1991) 575

    Google Scholar 

  21. R. Aleksan, I. Dunietz, B. Kayser: Z. Phys. C—Particles and Fields 54 (1992) 653

    Google Scholar 

  22. R. Aleksan, I. Dunietz, B. Kayser, F. Le Diberder: Nucl. Phys. B361 (1991) 141

    Google Scholar 

  23. A.B. Carter, A.I. Sanda: Phys. Rev. Lett. 45 (1980) 952; Phys. Rev. D23 (1981) 1567; L. Wolfenstein: Ann. Rev. Nucl. Part. Sci. 36 (1986) 137; I.I. Bigi, A.I. Sanda: Phys. Lett. B211 (1988) 213

    Google Scholar 

  24. E.D. Commins, P.H. Bucksbaum: Weak interactions of leptons and quarks. Cambridge: Cambridge University Press 1983; W. Koch: [6]; G. Källén: Elementary particle physics. Reading: Addison-Wesley 1964

    Google Scholar 

  25. The example of 143-1 as a way to measure the decay parameters is reviewed here. The decay parameters α, β, γ for the 143-2 process can be extracted from the angular distribution of the subsequent 143-3 decay, as follows: 143-4, 143-5, 143-6. 143-7. Here 143-8 and 143-9 denote the 143-10 polarization and the known decay parameter for 143-11, respectively. In the definition of the angles 143-12 is the emission direction ofp in the Λ rest frame, and the 143-13 are defined in the 143-14 rest frame as 143-15, 143-16, 143-17. The emission direction of Λ in the 143-18 rest frame is denoted by Â. The azimuthal dependence has been integrated out in the intensities 143-19. From 143-20 and the known 143-21, the decay parameter α can be extracted. The initial polarization can be measured from modes with much larger data samples than the very rare exclusive modes of interest in this work, which have potentially largeCP-violating effects. Thus, β and γ can be obtained from the measured intensities 143-22 and 143-23. Although this footnote uses a nonrelativistic framework, the relations remain true for particles in relativistic motion when an elaborate procedure of boosts is applied, see W. Koch: [6]

    Google Scholar 

  26. For a review see: J. Lach: Fermilab report, 1991, FERMILAB-Conf-91/200

  27. A. De Rujula et al.: in: Proc. of LHC Workshop (Aachen 1990), Vol. II, p. 201. G. Jarlskog, D. Rein (eds.). CERN 90-10

  28. M. Jacob, G.C. Wick: Ann. Phys. (N.Y.) 7 (1959) 404; W. Koch: [6]

    Google Scholar 

  29. J. Seguinot, T. Ypsilantis: CERN report, 1991, CERN-LAA/PI/91-004

  30. C.O. Dib, I. Dunietz, F.J. Gilman, Y. Nir: Phys. Rev. D41 (1990) 1522

    Google Scholar 

  31. J.L. Rosner: in: B Decays, p. 312. S. Stone (ed.). Singapore: World Scientific 1992; M. Schmidtler, K.R. Schubert: Z. Phys. C—Particles and Fields 53 (1992) 347

    Google Scholar 

  32. New physics could introduceCP-violating effects between Λb→ΛD0 and its charge-conjugated counterpart, and between\(\Lambda _b \to \Lambda \bar D^0 \) and its counterpart. We thank L. Lavoura for pointing this out to us

  33. The unlikely scenario requires equality between the Λb→ΛD0 and\(\Lambda _b \to \Lambda \bar D^0 \) rates. It would cause a much suppressed rate in either Λb→ΛD 0CP or\(\bar \Lambda _b \to \bar \Lambda D_{CP}^0 \), which would show up as a largeCP-violating rate asymmetry. Finally, no suppression in rate would occur when theD 0 is seen in modes with the oppositeCP-parity

  34. The non-factorizable graphs are absent in the 6 relevant processes of Ξ b →ΞD0 and Ω b →ΩD0, because no valenceu-quark exists in the initialb-flavoured baryon

  35. For a definition of colour-allowed and colour-suppressed processes see, for instance: M. Bauer, B. Stech, M. Wirbel: Z. Phys. C—Particles and Fields 34 (1987) 103

    Google Scholar 

  36. A. Yagil: talk presented at La Thuile, 1992

  37. C. Albajar et al.: Phys. Lett. B273 (1991) 540

    Google Scholar 

  38. M. Neubert et al.: Heidelberg report, HD-THEP-91-28, 1991, to be published in Heavy Flavours, A.J. Buras, M. Lindner (eds.)

  39. J.L. Rosner: Phys. Rev. D42 (1990) 3732; Enrico Fermi Institute report, EFI 90-80, 1990, presented at Snowmass 90

    Google Scholar 

  40. T. Mannel, W. Roberts, Z. Ryzak: Nucl. Phys. B355 (1991) 38; Phys. Lett. B255 (1991) 593

    Google Scholar 

  41. N. Isgur, M.B. Wise: Nucl. Phys. B348 (1991) 278; H. Georgi: Nucl. Phys. B348 (1991) 293

    Google Scholar 

  42. Particle Data Group, J.J. Hernández et al.: Phys. Lett. B239 (1990) 1

    Google Scholar 

  43. D. Izatt et al.: Nucl. Phys. B199 (1982) 269

    Google Scholar 

  44. The leptonic width is given by\(\Gamma _{ee} = \frac{{4\pi }}{3}\left( {\frac{4}{9}} \right)\frac{{\alpha ^2 }}{{m_\psi }}f_\psi ^2 \), where the electromagnetic fine structure constant is α≈1/137

  45. M. Danilov: review talk of heavy flavour physics (non-LEP) given at the Joint International Lepton-Photon Symposium & Europhysics Conference on High Energy Physics, CERN, Geneva, Switzerland, 1991

  46. L. Wolfenstein: Phys. Rev. D43 (1991) 151

    Google Scholar 

  47. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov: Phys. Rev. D18 (1978) 2583; S. Bertolini, F. Borzumati, A. Masiero: Phys. Rev. Lett. 59 (1987) 180; N.G. Deshpande et al.: Phys Rev. Lett. 59 (1987) 183; B. Grinstein, R. Springer, M.B. Wise: Nucl. Phys. B339 (1990) 269; A. Ali, C. Greub: Phys. Lett. B259 (1991) 182; Z. Phys. C—Particles and Fields 49 (1991) 431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunietz, I. CP violation with beautiful baryons. Z. Phys. C - Particles and Fields 56, 129–143 (1992). https://doi.org/10.1007/BF01589716

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589716

Keywords

Navigation