Skip to main content
Log in

A model of solidification under microgravity conditions

  • Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The influence of the microgravity environment on solidification processes is discussed. A simple model of the solidification of a binary-alloy is presented with the chemical diffusion influenced by the gravitational field. Using the results of Mullins and Sekerka, we employ the linear theory of hydrodynamic stability to investigate the interfacial instability driving the pattern-forming processes in solidification. As a result, we estimate the characteristic size of the elements of the emerging pattern. We show that, in spite of good agreement of our result with the size of cellulae observed in experiments, the model cannot explain the changes in the patterns occurring in space environment. In conclusion we shortly discuss the possibility of adding realism to our simple model by including the effect of convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barta č. et al.:in Proc. 4th Europ. Symp. on Mater. Sci. under Microgravity, Madrid, April 1983. ESA SP-191, June 1983, p. 79.

  2. Sekerka R. F., Coriell S. R.:in Proc. of 3rd European Symp. on Mater. Sci. in Space, Grenoble, April 1979. ESA SP-142, June 1979, p. 55.

  3. Petrovskii G. T., Voronkov G. L.: Optical Technology in Space. Mashinostroenie, Leningrad, 1984 (in Russian).

    Google Scholar 

  4. Rubinstein L.: J. Inst. Math. Appl.24 (1979) 259.

    Google Scholar 

  5. Langer J. S.: Rev. Mod. Phys.52 (1980) 1.

    Google Scholar 

  6. Vodák F.: Physica A112 (1982) 256.

    Google Scholar 

  7. Mullins W. W., Sekerka R. F.: J. Appl. Phys.34 (1963) 323.

    Google Scholar 

  8. Mullins W. W., Sekerka R. F.: J. Appl. Phys.35 (1964) 444.

    Google Scholar 

  9. Wollkind D. J. et al.: Am. Math. Monthly86 (1979) 175.

    Google Scholar 

  10. Wollkind D. J., Segel L. A.: Phil. Trans. Roy. Soc. London A268 (1970) 351.

    Google Scholar 

  11. Wollkind D. J.:in Preparation of Properties of Solid State Materials. (Ed. W. R. Wilcox). Dekker, New York, 1979, p. 111.

    Google Scholar 

  12. Tarshis L. A.: Interface Morphology Consideration during Solidification (PhD Thesis). Stanford University, Stanford, 1967.

    Google Scholar 

  13. Sekerka R. F.:in Phase Transformations and Material Instabilities in Solids. Academic Press, New York, 1984, p. 147.

    Google Scholar 

  14. CRC Handbook of Chemistry and Physics, 72th edition (Ed. by D. R. Lide). CRC Press, Boca Raton, 1991.

    Google Scholar 

  15. Binary Alloy Phase Diagrams. Vol. 1, 2. (Ed. by T. B. Massalski et al.). American Society for Metals, Metals Park, Ohio, 1986.

    Google Scholar 

  16. Alexiades V., Geist G. A., Solomon A. D.: Res. Rep. ORNL-6127. Oak Ridge National Laboratory, Oak Ridge, 1985.

    Google Scholar 

  17. Vodák F., černý R., PŘikryl P.: Int. J. Heat Mass Transf.35 (1992) 1787.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PŘikryl, P., Vodák, F., Kapičková, O. et al. A model of solidification under microgravity conditions. Czech J Phys 43, 63–71 (1993). https://doi.org/10.1007/BF01589585

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589585

Keywords

Navigation