Skip to main content
Log in

Root respiration and its importance for the carbon balance of beech saplings (Fagus sylvatica L.) in a montane beech forest

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root respiration of 10-year-old beech saplings (Fagus sylvatica L.) grown in the understorey (UND) and in a natural gap (GAP) of a mature beech forest in the Solling mountains, FRG, was investigated from April until December, 1990. Respiration rates of fine, medium and coarse roots were measured in situ by a PC-controlled cuvette system. Fine root respiration rates were in the range of 0.5–9.8 nmol CO2 gDW−1 s−1 at both sites, but respiration rates of UND saplings were higher, compared to those of GAP saplings. The dependence of respiratory activity on soil temperature proved to be highly significant (p<0.001) for both plots, following a quasi-Arrhenius type curve. Fine root respiration rates of UND saplings were highly significantly, negatively correlated with the water content of the attached organic material, whereas respiration rates of GAP saplings did not show such a correlation. Further, a significant correlation (p<0.01) between mycorrhizal biomass and respiration rate was detected at the UND site, but not at the GAP site. Medium and coarse root respiration rates were very similar and no significant differences between the two sites were detected. Maximum respiration rates of 3.1 nmol CO2 gDW−1 s−1 were reached in the middle of July. Due to low light intensities in the under storey, daily net CO2 assimilation rates of UND saplings were much smaller than those of GAP saplings. At both sites, net CO2 assimilation rates varied more than respiration rates and thus the carbon balance of beech saplings was more affected by the rate of carbon fixation than by the rate of respiratory carbon loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AgererR 1986 Studies on Ectomykorrhiza II: Introducing remarks on characterization and identification. Mycotaxon Vol. XXVI, 473–492.

    Google Scholar 

  • AgererR 1988 Colour Atlas of Ectomycorrhizae. Einhorn Verlag Eduard Dietenberger GMBH, Schwäbisch Gmünd, FRG.

    Google Scholar 

  • AgererR, BrandF and GronbachE 1986 Die exakte Kenntnis der Ektomykorrhizen als Voraussetzung für die Feinwurzeluntersuchungen im Zusammenhang mit dem Waldsterben. AFZ 20, 497–503.

    Google Scholar 

  • AmthorJ S 1989 Respiration and Crop Productivity. Springer, Berlin, Heidelberg, New York, FRG. 204p.

    Google Scholar 

  • BoardmanN K 1977 Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28, 355–377.

    Google Scholar 

  • Bolhar-NordenkampfH R 1985 Shoot morphology and leaf anatomy in relation to photosynthesis.In Techniques in Bioproductivity and Photosynthesis. Eds. JCoombs, D OHall, S PLong and J M OScurlock. pp 107–117. Pergamon Press, Oxford, UK.

    Google Scholar 

  • CampbellR and GreavesM P 1990 Anatomy and community structure of the rhizosphere.In The Rhizosphere. Ed. J MLynch. Environmental and Applied Microbiological Series. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • CanhamCh D 1988 Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69, 786–795.

    Google Scholar 

  • CanhamCh D 1989 Different responses to gaps among shade-tolerant tree species. Ecology 70, 548–550.

    Google Scholar 

  • Carlberg S 1992 Vergleichende Untersuchungen der Mikroflora von wurzelfreiem Boden und der Rhizosphäre von Jungbuchen. Diplomarbeit, Inst. Pflanzenpathologie und Pflanzenschutz, Universität Göttingen, FRG. 90p.

  • ChapmanS B 1979 Some interrelationships between soil and root respiration in lowland calluna heathland in southern England. J. Ecol. 67, 1–20.

    Google Scholar 

  • ChazdonR L 1986 Light variation and carbon gain in rain forest understorey palms. J. Ecol. 74, 995–1012.

    Google Scholar 

  • ChazdonR L 1988 Sunflecks and their importance to forest under-storey plants.In Advances in Ecological Research Vol 18. Eds. MBegon, A MFitter, E DFord and AMacfadyen. pp 1–63. Academic Press London, New York, UK.

    Google Scholar 

  • ComeauP G and KimminsJ P 1989 Above-and below-ground biomass production of lodgepole pine on sites with differing soil moisture regimes. Can. J. For. Res. 19, 447–454.

    Google Scholar 

  • DeansJ D 1979 Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation. Plant and Soil 52, 195–208.

    Google Scholar 

  • EberW 1972 Über das Lichtklima von Wäldern bei Göttingen und seinen Einfluß auf die Bodenvegetation. Scripta Geobot. 3. Goltze Verlag, Göttingen, FRG. 150p.

    Google Scholar 

  • EhrhardtO 1988 Der Strahlungshaushalt eines Buchenwaldes und dessen Abwandlung während der verschiedenen phänologischen Entwicklungsphasen. Ber. Forschungszentrums Waldökosysteme, Univ. Gött., Reihe A, 45, 1–170.

    Google Scholar 

  • EllenbergH, MayerR and SchauermannJ 1986 Ökosystemforschung, Ergebnisse des Sollingprojekts 1966–1986. Eugen Ulmer, Stuttgart, FRG, 507 p.

    Google Scholar 

  • EndlerJ A 1993 The color of light in forests and its implications. Ecol. Monogr. 63, 1–27.

    Google Scholar 

  • EssiamahS and EschrichW 1985 Changes of starch content in the storage tissues of deciduous trees during winter and spring. IAWA Bull. n.s. Vol. 6, 97–106.

    Google Scholar 

  • FarrarJ F and WilliamsM L 1991 The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell Environ. 14, 819–830.

    Google Scholar 

  • Gales K 1977 A study of the effect of drought on root growth and root-shoot relationships inLolium perenne. L. Ph. D. thesis, University of London.

  • GalesK 1979 Effects of water supply on partitioning of dry matter between roots and shoots inLolium perenne. J. Appl. Ecol. 16, 863–877.

    Google Scholar 

  • GöttscheD 1972 Die Verteilung von Feinwurzeln und Mykorrhizen im Bodenprofil eines Buchen- und Fichtenbestandes im Solling. Mitt. Bundesforschungsanst. Forst Holzwirtsch. 88, 1–120.

    Google Scholar 

  • GrossL J 1982 Photosynthetic dynamics in varying light environments: a model and its application to whole leaf carbon gain. Ecology 63, 84–93.

    Google Scholar 

  • HarleyJ L 1969 The Biology of Mycorrhiza. Leonard Hill, London, UK. 334p.

    Google Scholar 

  • HoffmannG 1972 Wachstumsrhythmik der Wurzeln und Sproszachsen von Forstgehölzen. Flora 161, 303–319.

    Google Scholar 

  • JanecekA, BenderothG, LüdekeM K B, KindermannJ and KohlmaierG H 1989 Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables. Ecol. Modell. 49, 101–124.

    Google Scholar 

  • KöstlerJ N, BrücknerE and BiebelrietherH 1968 Die Wurzeln der Waldbäume. Parey Verlag, Hamburg, Berlin, FRG. 284p.

    Google Scholar 

  • KramerP J and HodgsonR H 1954 Differences between mycorrhizal and non-mycorrhizal roots of Loblolly pine. VIIIth Int. Bot. Cong. Paris, 13, 133–134.

    Google Scholar 

  • LadefogedK 1939 Untersuchungen über die Periodizität im Ausbruch und Längenwachstum der Wurzeln bei einigen unserer gewöhnlichsten Waldbäume. Forstl. Forsogsvaes. Dan. 16, 1–256.

    Google Scholar 

  • LambersH 1985 Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms.In Encyclopedia of Plant Physiology 18. Eds. RDouce and D ADay. pp 418–473. Springer, Berlin, Heidelberg, New York, FRG.

    Google Scholar 

  • LambersH, Van derWerfA and KoningsH 1991 Respiratory patterns in roots in relation to their functioning.In Plant Roots: The Hidden Half. Eds. YWaisel and AEshel. pp 229–263. Marcel Dekker, Inc. New York, USA.

    Google Scholar 

  • LarcherW 1969 The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees. Photosynthetica 3, 167–198.

    Google Scholar 

  • LarcherW 1980 Physiological Plant Ecology. Springer, Berlin, Heidelberg, New York, FRG. 252p.

    Google Scholar 

  • Long S P and Woodward F I 1988 Plants and Temperature. Symp. Soc. Experimental Biology, 42, Cambridge, UK.

  • LyrH, FiedlerH J and TranquilliniW 1992 Physiologie und Ökologie der Gehölze. Gustav Fischer Verlag, Jena, Stuttgart, FRG. 620p.

    Google Scholar 

  • MasarovicovaE 1980 Photosynthesis, photorespiration and mitochondrial respiration onFagus sylvatica L. seedlings: effects of temperature and oxygen concentration. Photosynthetica 14, 321–325.

    Google Scholar 

  • MasarovicovaE 1988 Comparative study of growth and carbon uptake inFagus sylvatica L. trees growing under different light conditions. Biol. Plant. (Praha) 30, 285–293.

    Google Scholar 

  • MurachD 1984 Die Reaktion der Fichtenfeinwurzeln (Picea abies Karst.) auf zunehmende Bodenversauerung. Gött. Bodenkdl. Ber. 77, 1–126.

    Google Scholar 

  • NeemannG and StickanW 1991 Untersuchungen zum Kohlenstoff-Haushalt von Jungbuchen-Assimilatspeicherung in Abhängigkeit von der Einstrahlung. Ber. Forschungszentrums Waldökosysteme, Univ. Gött. Reihe B, 22, 152–155.

    Google Scholar 

  • NewmanE I 1985 The rhizosphere: carbon sources and microbial populations.In Ecological Interactions in Soil. Ed. A HFitter. pp 107–121. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • NisbetT R and MullinsC E 1986 A comparison of live and dead fine root weights in stands of Sitka spruce in contrasting soil water regimes. Can. J. For. Res. 16, 394–397.

    Google Scholar 

  • PaltaJ A and NobelP S 1989 Root respiration forAgave deserti: influence of temperature, water status and root age on daily patterns. J. Exp. Bot. 40, 181–186.

    Google Scholar 

  • PearcyR W 1983 The light environment and growth of C3 and C4 species in the understory of a Hawaiian forest. Oecologia (Berlin) 58, 26–32.

    Google Scholar 

  • PoulsonTh L and PlattW J 1989 Gap light regimes influence canopy tree diversity. Ecology 70, 553–555.

    Google Scholar 

  • PrechtH, ChristophersenJ, HenselH and LarcherW 1973 Temperature and Life. Springer, Berlin, Heidelberg, New York, FRG. 779p.

    Google Scholar 

  • RappC 1991 Untersuchungen zum Einflusz von Kalkung und Ammonium-sulfat-Düngung auf Feinwurzeln und Ektomykorrhizen eines Buchenaltbestandes im Solling. Ber. Forschungszentrums Waldökosysteme, Univ. Gött. Reihe A, 72, 1–293.

    Google Scholar 

  • ReesU and StickanW 1991 Untersuchungen zum C-Haushalt von Jungbuchen-CO2-Assimilation in Abhängigkeit von der Einstrahlung. Ber. Forschungszentrums Waldökosysteme, Univ. Gött., Reihe B Bd. 22, 138–141.

    Google Scholar 

  • RoloffA 1986 Morphologische Untersuchungen zum Wachstum und Verzweigungssystem der Rotbuche (Fagus sylvatica L.). Mitt. Dtsch. Dendrol. Ges. 76, 5–47.

    Google Scholar 

  • SachsL 1992 Angewandte Statistik. Springer, Berlin, Heidelberg, New York, FRG. 846p.

    Google Scholar 

  • SantantonioD and HermannR K 1985 Standing crop, production and turnover of fine roots on dry, moderate and wet sites of mature Douglas-fir in western Oregon. Ann. Sci. For. 42, 113–142.

    Google Scholar 

  • Schmaltz J 1964 Untersuchungen über den Einflusz von Beschattung und Konkurrenz auf junge Buchen. Diss. Univ. Göttingen, FRG.

  • SchulteM 1993 Saisonale und interannuelle Variabilität des CO2-Gaswechsels von Buchen (Fagus sylvatica L.)-Bestimmung von C-Bilanzen mit Hilfe eines empirischen Modells. Shaker Verlag Aachen, FRG. 164p.

    Google Scholar 

  • SchulzeE D 1970 Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159, 177–232.

    Google Scholar 

  • StickanW and HentzeltH 1991 Untersuchungen zum Kohlenstoff-haushalt von Jungbuchen-Der Einsatz preisgünstiger Si-Fotodioden zur Bestimmung der photosynthetisch wirksamen Strahlung. Ber. Forschungszentrums Waldökosysteme, Univ. Gött., Reihe B 22, 133–137.

    Google Scholar 

  • StickanW and ZhangX 1992 Seasonal changes in CO2 and H2O gas exchange of young European beech (Fagus sylvatica L.). Trees 6, 96–102.

    Google Scholar 

  • StickanW, GansertD, NeemannG and ReesU 1992 Kohlenstoff-und Wasserhaushalt von Jungbuchen und Krautschicht im Verlauf einer Bestandesentwicklung. Ber. Forschungszentrums Waldökosysteme, Univ. Gött., Reihe B 31, 591–604.

    Google Scholar 

  • SunerA and RöhrigE 1980 Die Entwicklung der Buchennaturver-jüngung in Abhängigkeit von der Auflichtung des Altbestandes. Forstarchiv 51, 145–149.

    Google Scholar 

  • VeenB N 1981 Relation between root respiration and root activity. Plant and Soil 63, 73–76.

    Google Scholar 

  • WaiselY and EshelA 1991 Plant Roots: The Hidden Half (Soils, Plants and the Environment). Marcel Dekker, Inc. New York, USA. 944 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gansert, D. Root respiration and its importance for the carbon balance of beech saplings (Fagus sylvatica L.) in a montane beech forest. Plant Soil 167, 109–119 (1994). https://doi.org/10.1007/BF01587605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01587605

Key words

Navigation