The Soviet Journal of Atomic Energy

, Volume 5, Issue 2, pp 983–991 | Cite as

Present situation in the production and use of thorium

  • G. E. Kaplan
  • Iu. I. Zarembo
  • T. A. Uspenskaia


The possible uses of thorium in the atomic industry and in other branches of industry, for example in the production of high-melting magnesium alloys, have resulted in an intense development of the thorium industry and in research work in this field. In recent years, a number of plants have been built in the U.S.A., India, Brazil and other countries for the treatment of thorium raw material. The recovery of thorium and the rare-earth elements from monazite is carried out mainly by alkaline methods. Extraction processes are widely used for the production of pure thorium compounds. Metallic thorium is produced by metallothermal methods and also by the electrolysis of chloride-fluoride or purely fluoride baths. Compact metallic thorium is obtained by the power metallurgical method or by the melting method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. [1]
    Metal. Progr. 71, No. 2, 97 (1957).Google Scholar
  2. [2]
    Light Metals 20, No. 227, 58 (1957).Google Scholar
  3. [3]
    Appl. Atomics, No. 96, 9 (1957).Google Scholar
  4. [4]
    United Kingdom Atomic Energy Authority, Third Annual Report, 1956–1957; Financial Times, 15th January 1957, 1st July 1957; Electrical Times, 130 (3397), 931 (1956).Google Scholar
  5. [5]
    Nucleonics 15, No. 4, 20 (1957).Google Scholar
  6. [6]
    Nucl. Power Plants Mech. Engng. 79 (3), 233 (1957).Google Scholar
  7. [7]
    Rare-Earth Metals. Collection of Articles under the Editorship of L. N. Komissarova and V. E. Pliushchev, Foreign Literature Press, 1957 [in Russian].Google Scholar
  8. [8]
    Chem. Ind. 9, No. 1, 24 (1957).Google Scholar
  9. [9]
    C. F. Davidson, Min. Mag. 94, No. 4, 197 (1956).Google Scholar
  10. [10]
    I. G. Mogak'ian, Ore Deposits, State Geology Press, 1955 [in Russian].Google Scholar
  11. [11]
    Min. World 19, No. 9, 89 (1057).Google Scholar
  12. [12]
    Min. Congr. J. 40, No. 3, 50 (1954).Google Scholar
  13. [13]
    B. I. Kogan, Khimicheskaia nauka i promyshlennost', I, No. 5, 564 (1956).Google Scholar
  14. [14]
    B. I. Kogan, Tsvetnye metally, No. 10, 89 (1956).Google Scholar
  15. [15]
    G. E. Kaplan, T. A. Uspenskaia, K.V. Orlov and M. V. Sadovnikova, Investigation in the fields of geology, chemistry and metallurgy (Papers read by the Soviet delegation at the International Conference on the Peaceful Uses of Atomic Energy), Acad. Sci. USSR Press, 1955, p. 105 [in Russian].Google Scholar
  16. [16]
    A. R. Powell et al., Brit. Patent 510198 (1939).Google Scholar
  17. [17]
    A. Audsley, R. Lind and P. G. England, Extraction and Refining of the Rare Metals, London, 1957, p. 351.Google Scholar
  18. [18]
    R. Krumholz and F. Goltdenker, Extraction of thorium and uranium from Brazilian monazite (Paper No. 133 presented by Brazil at the International Conference on the Peaceful Uses of Atomic Energy), Geneva, 1955.Google Scholar
  19. [19]
    A. E. Bearse, G. D. Calkins et al., Chem. Engng. Progr. 50, No. 5, 235 (1954).Google Scholar
  20. [20]
    Chem. Engng. News 31, No. 681, 1550 (1956).Google Scholar
  21. [21]
    G. A. Meerson, G. E. Kaplan and T. A. Uspenskaia, Atomnaia energiia III, No. 9, 259(1957).Google Scholar
  22. [22]
    O. N. Carbon et al., The metallurgy of thorium and its alloys (Paper No. 556, presented by the U.S.A. at the International Conference on the Peaceful Uses of Atomic Energy), Geneva, 1955.Google Scholar
  23. [23]
    C. C. Templeton and N. F. Hall, J. Phys. Coll. Chem. 51, 1441 (1947).Google Scholar
  24. [24]
    E. K. Hyde, Chemistry of nuclear fuel (Papers read by foreign scientists at the International Conference on the Peaceful Uses of Atomic Energy), State Chemistry Press, 1956, p. 393 [Russian translation].Google Scholar
  25. [25]
    H. A. C. McKay, ibid, p. 496.Google Scholar
  26. [26]
    A. Chesne and P. Regnaut, ibid., p. 174.Google Scholar
  27. [27]
    H. T. Gresky. ibid, p. 141.Google Scholar
  28. [28]
    J. C. Warf, J. Amer. Chem. Soc. 71, 5257/8 (1949).Google Scholar
  29. [29]
    V. V. Fomin and E. P. Mairova, Zhur. Neorg. Khim. I, No. 8, 1703 (1956).Google Scholar
  30. [30]
    K. Smutz, C. L. Bridger, K. J. Shaw and R. B. Filbert, Chem. Eng. Progr. Symp. Ser. No, 11; Nucl. Eng. Part II, 1954.Google Scholar
  31. [31]
    G. A. Meerson, A. F. Islankina and Iu. I. Zarembo, Investigations in the fields of geology, chemistry and metallurgy (Papers presented by the Soviet delegation to the International Conference on the Peaceful Uses of Atomic Energy). Acad. Sci. USSR Press, 1955, p. 113.Google Scholar
  32. [32]
    J. W. Marden and H. Rentschler, Ind. Engng. Chem. 19, 97 (1927).Google Scholar
  33. [33]
    H. C. Rentschler, W. C. Lilliendahl and J. E. Gray, U. S. Patent 2,446,062 (1948).Google Scholar
  34. [34]
    W. C. Lilliendahl, U. S. Patent, 2,537,067 (1951).Google Scholar
  35. [35]
    O. C. Dean, Nucl. Engng. and Science Conference, Oak Ridge National Laboratory Paper 49, March 11–14, Philadelphia, 1957.Google Scholar
  36. [36]
    O. Ruff and H. Brintzingen, Z. anorg. allgem. Chemie, 129, 267 (1923).Google Scholar
  37. [37]
    R. Lautie, Bull. Soc. Chim. 14, 974 (1947).Google Scholar
  38. [38]
    M. A. Steinberg, Forum Report Commercial and International Development in Atomic Energy, No. 7, 415 (1956).Google Scholar
  39. [39]
    V. S. Emel'ianov and A. I. Evstlukhin, Atomnaia Energiia, No. 4, 107 (1956).Google Scholar
  40. [40]
    A. E. Van Arkel and J. H. de Boer, Z. anorg. allgem. Chem. 148, 345 (1925).Google Scholar

Copyright information

© Consultants Bureau, Inc. 1959

Authors and Affiliations

  • G. E. Kaplan
  • Iu. I. Zarembo
  • T. A. Uspenskaia

There are no affiliations available

Personalised recommendations