Skip to main content
Log in

Nonradiative heterofusion of excitons in doped organic molecular crystals

  • Published:
Czechoslovak Journal of Physics B Aims and scope

Abstract

The nonradiative heterofusion of a host exciton with a guest molecule electronic excitation resulting in a higher electronic neutral single excited state is examined theoretically in the doped organic molecular crystals. The heterofusion process is treated as a nonradiative spontaneous multi-lattice phonon transition of the crystal from the electronic double excited initial state to the electronic single excited final state under the action of the interaction between the host molecules and the guest molecule. Two heterofusion channels are considered: the first one resulting in a higher electronic excited state of the guest molecule and the second one resulting in a higher host exciton state. The corresponding rate constants are calculated and discussed within the framework of the first order time dependent perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaevskij A. S., Fajdyš A. N., Dokl AN SSSR172 (1967), 809.

    Google Scholar 

  2. Prijnaček V. R., Fajdyš A. N., Opt. i spektr.27 (1969), 431.

    Google Scholar 

  3. Prijnaček V. R., Fajdyš A. N., Izv. AN SSSR, Ser. fiz.34 (1970), 583.

    Google Scholar 

  4. Groff R. P., Merrifield R. E., Avakian P., Tomkiewicz Y., Phys. Rev. Letters25 (1970), 105.

    Google Scholar 

  5. Swenberg C. E., Geacintov N. E., Organic molecular photophysics, (Wiley, New York 1973).

    Google Scholar 

  6. Kalinowski J., Godlewski J., Chem. Phys. Letters25 (1974), 499.

    Google Scholar 

  7. Dexter D. L., Forster T., Knox R. S., Phys. status solidi34 (1969), K 159.

    Google Scholar 

  8. Förster T., Ann. Physik2 (1948). 55.

    Google Scholar 

  9. Dexter D. L., J. Chem. Phys.21 (1953), 836;Dexter D. L.,Schulman J. H., J. Chem. Phys.22 (1954), 1063.

    Google Scholar 

  10. Robinson G. W., Frosch R. P., J. Chem. Phys.37 (1962), 1962; J. Chem. Phys.38 (1963), 1187.

    Google Scholar 

  11. Markham J. J., Rev. Mod. Phys.31 (1959), 956.

    Google Scholar 

  12. Kubo R., Toyozawa Y., Progr. Theor. Phys.13 (1955), 160.

    Google Scholar 

  13. Condon E. U., Shortley G. H., The Theory of Atomic Spectra (Cambridge University Press, Cambridge, England 1953), 76.

    Google Scholar 

  14. Beuhler R., Hirschfelder J., Phys. Rev.83 (1951), 628.

    Google Scholar 

  15. Rice S. A., Yortner J., Comments on the theory of the exciton states of molecular crystals in Physics and Chemistry of the Organic Solid State vol. III (1967), 199. (J. Wiley & Sons, New York, London, Sydney).

    Google Scholar 

  16. Craig D. P., Walmsley S. H., Excitons in Molecular Crystals, W. A. Benjamin, Inc., New York 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trlifaj, M. Nonradiative heterofusion of excitons in doped organic molecular crystals. Czech J Phys 25, 1297–1307 (1975). https://doi.org/10.1007/BF01587353

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01587353

Keywords

Navigation