pure and applied geophysics

, Volume 118, Issue 1, pp 86–127 | Cite as

The stratospheric sulfate aerosol layer: Processes,models, observations, and simulations

  • R. C. Whitten
  • O. B. Toon
  • R. P. Rurco
Article

Abstract

After briefly reviewing the observational data on the stratospheric sulfate aerosol layer, the chemical and physical processes that are likely to fix the properties of the layer are discussed. We present appropriate continuity equations for aerosol particles, and show how to solve the equations on a digital computer. Simulations of the unperturbed aerosol layer by various published models are discussed and the sensitivity of layer characteristics to variations in several aerosol model parameters is studied. We discuss model applications to anthropogenic pollution problems and demonstrate that moderate levels of aerospace activity (supersonic transport and space shuttle operations) will probably have only a negligible effect on global climate. Finally, we evaluate the possible climatic effect of a ten-fold increase in the atmospheric abundance of carbonyl sulfide.

Key words

Stratosphere Aerosol layer Sulfates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M.,Ultraviolet solar radiation related to mesospheric processes, inMesospheric Models and Related Experiments, G. Fiocco, ed.. (Reidel Publ. Co., Dordrecht, Holland, 1971), pp. 149–159.Google Scholar
  2. Arnold, F. andHenschen, G. (1978),First mass analysis of stratospheric negative ions, Nature275, 521–522.Google Scholar
  3. Atkinson, R. andPitts, J. N. (1974),Rate constants for the reaction of O(3P)atoms with SO2 (M=N2)over the temperature range 299–392 K, Chem. Phys. Lett.29, 28–30.Google Scholar
  4. Atkinson, R., Perry, R. A. andPitts, J. N. (1978),Rate constants for the reaction of OHradicals with COS, CS2,and CH3SCH3 over the temperature range 299–430 K, Chem. Phys. Lett.54, 14–18.Google Scholar
  5. Bigg, E. K., Kviz, Z. andThompson, W. J. (1972),An October influx of submicron particles into the lower stratosphere, J. Geophys. Res.77, 3916–3923.Google Scholar
  6. Breckinridge, W. H. andTaube, H. (1970),Ultraviolet absorption spectrum of carbonyl sulfide, J. Chem. Phys.52, 1713–1715.Google Scholar
  7. Burgmeier, J. W. andBlifford, I. H. (1975),A reinforced coagulation-sedimentation model for stratospheric aerosols, Water, Air, and Soil Poll.5, 133–147.Google Scholar
  8. Cadle, R. D. andGrams, G. W. (1975),Stratospheric aerosol particles and their optical properties, Revs. Geophys. and Space Phys.15, 475–501.Google Scholar
  9. Cadle, R. D. andLanger, G. (1975),Stratospheric Aitken particles near the tropopause, Geophys. Res. Lett.2, 329–332.Google Scholar
  10. Cadle, R. D., Crutzen, P. andEhhalt, D. (1975),Heterogeneous chemical reactions in the stratosphere, J. Geophys. Res.80, 3381–3385.Google Scholar
  11. Cadle, R. D., Kiang, C. S. andLouis, J.-F. (1976),The global dispersion of the eruption clouds from major volcanic explosions, J. Geophys. Res.81, 3125–3132.Google Scholar
  12. Cadle, R. D., Fernald, F. G. andFrush, C. L. (1977),Combined use of lidar and numerical diffusion models to estimate the quantity and dispersion of volcanic eruption clouds in the stratosphere: Vulcan Fuego, 1974 and Augustine, 1976, J. Geophys. Res.82, 1783–1786.Google Scholar
  13. Cadle, R. D. andKiang, C. S. (1977),Stratospheric Aitken particles, Revs. Geophys. and Space Phys.15, 195–202.Google Scholar
  14. Calvert, J. G. andMcQuigg, R. D. (1975),The computer simulation of the rates and mechanisms of photochemical smog formation, Int. J. Chem. Kin. Symposium1, 113–154.Google Scholar
  15. Calvert, J. G., Su, F., Bottenheim, J. W. andStrausz, O. P. (1978),Mechanism of homogeneous oxidation of sulfur dioxide in the troposphere, Atmos. Env.12, 197–226.Google Scholar
  16. Campbell, M. J., Sheppard, J. C., Au, B. andMuralidhar, V. (1978),Measurement of hydroxyl concentration in Northern and Southern hemisphere boundary layers, Trans. Amer. Geophys. Union (EOS)59, 1079.Google Scholar
  17. Castleman, A. W., Jr.,Davis, R. E., Munkelwitz, H. R., Tang, I. N. andWood, W. P. (1975),Kinetics of association reactions pertaining to H2SO4 aerosol formation, Int. J. Chem. Kin. Symposium1, 629–640.Google Scholar
  18. Castleman, A. W., Holland, P. M. andKeesee, R. G. (1979),The properties of ion clusters and their relationship to heteromolecular nucleation. J. Chem. Phys.68, 1760–1767.Google Scholar
  19. Chou, C. C., Ruiz, H. V., Moe, K. andRowland, F. S. (1976),UV absorption cross sections for OCS, unpublished data, Dept. of Chemistry, University of California, Irvine, California.Google Scholar
  20. CIAP, Monograph 2 (1975),Propulsion Effluents in the Stratosphere (ed. by J. M. English), Monograph 3 (1975a),The Stratosphere Perturbed by Propulsion Effluents (ed. by G. D. Robinson, H. Hidalgo and R. Greenstone), and Monograph 5, part 2,Impacts of Climatic Change on the Biosphere (ed. by J. Batholic), Climatic Impact Assessment Program, U.S. Department of Transportation, NTIS, Springfield, Virginia.Google Scholar
  21. Crutzen, P. J. (1976),The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett.3, 73–76.Google Scholar
  22. Davis, D. D. (1974),Kinetics of atmospheric reactions involving H x O y compounds, Canad. J. Chem.52, 1405–1414.Google Scholar
  23. Davis, D. D. andKlauber, G. (1975),Atmospheric gas phase oxidation mechanisms for the molecule SO2, Int. J. Chem. Kin. Symposium1, 543–556.Google Scholar
  24. Davis, D. D., Klemm, R. B. andPilling, M. (1972),A flash-photolysis resonance-fluorescence kinetic study of ground state sulfur atoms. I. Absolute rate parameters for reaction of S(3P)with O2 (Ζ), Int. J. Chem. Kin.4, 367–382.Google Scholar
  25. Farlow, N. H., Snetsinger, K. G., Lem, H. Y., Hayes, D. M. andTrooper, B. M. (1978),Nitrogen-sulfur compounds in stratospheric aerosols, J. Geophys. Res.83, 6207–6212.Google Scholar
  26. Farlow, N. H., Ferry, G. V., Lem, H. Y. andHayes, D. M. (1979),Latitudinal variations of stratospheric aerosols, J. Geophys. Res.84, 733–744.Google Scholar
  27. Ferry, G. V. andLem, H. Y.,Aerosols at 20 kmaltitude, Second International Conference on the Environmental Impact of Aerospace Operations in the High Atmosphere, July 8–10 (published by the American Meteorological Society, Boston, Mass., 1974), pp. 27–33.Google Scholar
  28. Friedlander, S. K. (1961),Theoretical considerations for the particle size spectrum of the stratospheric aerosol, J. Meteorol.18, 753–759.Google Scholar
  29. Friend, J. P. (1966),Properties of the stratospheric aerosol, Tellus28, 465–473.Google Scholar
  30. Friend, J. P.,The global sulfur cycle, inChemistry of the Lower Atmosphere, ed. by S. I. Rasool (Plenum Press, N.Y., 1973), pp. 177–201.Google Scholar
  31. Friend, J. P., Leifer, R. andTrichon, M. (1973),On the formation of stratospheric aerosols, J. Atmos. Sci.30, 465–479.Google Scholar
  32. Fuchs, N. A.,The Mechanics of Aerosols (Pergamon Press, The Macmillan Co., London, New York, 1964), 408 pp.Google Scholar
  33. Golomb, D., Watanabe, K. andMarmo, F. F. (1962),Absorption coefficients of sulfur dioxide in the vacuum ultraviolet, J. Chem. Phys.36, 958–959.Google Scholar
  34. Graedel, T. E. (1977),The oxidation of ammonia, hydrogen sulfide, and methane in nonurban tropospheres, J. Geophys. Res.82, 5917–5922.Google Scholar
  35. Hamill, P., Kiang, C. S. andCadle, R. D. (1977a),The nucleation of H2SO4 solution aerosol particles in the stratosphere, J. Atmos. Sci.34, 150–162.Google Scholar
  36. Hamill, P., Toon, O. B. andKiang, C. S. (1977b),Microphysical processes affecting stratosphere aerosol particles, J. Atmos. Sci.34, 1104–1119.Google Scholar
  37. Hansen, J. E., Wang, W.-C. andLacis, A. A. (1978),Mount Agung eruption provides test of a global climatic perturbation, Science199, 1065–1068.Google Scholar
  38. Hanst, P. L., Speller, L. L., Watts, D. M., Spence, J. W. andMiller, M. F. (1975),Infrared measurements of fluorocarbons, carbon tetrachloride, carbonyl sulfide, and other atmospheric trace gases, J. Air Pollut. Control Assoc.25, 1220–1226.Google Scholar
  39. Harker, A. B. (1975),The formation of sulfate in the stratosphere through gas phase oxidation of sulfur dioxide, J. Geophys. Res.80, 3399–3401.Google Scholar
  40. Harries, J. E. (1976),The distribution of water vapor in the stratosphere, Revs. Geophys. and Space Phys.14, 565–575.Google Scholar
  41. Hofmann, D. G. andRosen, J. M. (1977),Balloon abservations of the time development of the stratospheric aerosol event of 1974–1975, J. Geophys. Res.82, 1435–1440.Google Scholar
  42. Hofmann, D. G., Rosen, J. M. andPepin, T. J. (1974),Global measurements of the time variations and morphology of the stratospheric aerosol, Report GM-18 Dept. of Physics and Astronomy, University of Wyoming, Laramie, Wyoming.Google Scholar
  43. Hofmann, D. J., Rosen, J. M., Pepin, T. J. andPinnick, R. G. (1975a),Stratospheric aerosol measurements. I. Time variations at northern mid-latitudes, J. Atmos. Sci.32, 1446–1456.Google Scholar
  44. Hofmann, D. J., Carroll, D. E. andRosen, J. M. (1975b),Estimate of the contribution of the space shuttle effluent to the natural stratospheric aerosol, Geophys. Res. Lett.2, 113–116.Google Scholar
  45. Hoppel, W. A. (1976),Growth of condensation nuclei by heteromolecular condensation, J. Rech. Atm.9, 167–180.Google Scholar
  46. Inn, E. C. Y. (1975),Absorption coefficients for HClin the region 1400–2200 A, J. Atmos. Sci.32, 2375–2377.Google Scholar
  47. Inn, E. C. Y., Vedder, J. F., O'Hara, D. andTyson, B. J. (1979), COSin the stratosphere, Geophys. Res. Lett.6, 191–193.Google Scholar
  48. Jaeschke, W., Schmitt, R. andGeorgii, H. W. (1976),Preliminary results of stratospheric SO2 measurements, Geophys. Res. Lett.,3, 517–519.Google Scholar
  49. Johnston, H. S., Kattenhorn, D. andWhitten, G. (1976),Use of excess carbon 14 data to calibrate models of stratospheric ozone depletion by supersonic transports, J. Geophys. Res.,81, 368–380.Google Scholar
  50. Junge, C. E., Chagnon, C. W. andManson, J. E. (1961),Stratospheric aerosols, J. Meteorol.18, 81–108.Google Scholar
  51. Käselau, K. H., Fabian, P. andRohrs, H. (1974),Measurements of aerosol concentration up to a height of 27 km, Pure Appl. Geophys.112, 877–885.Google Scholar
  52. Kasten, F. (1968),Falling speed of aerosol particles, J. Appl. Meteorol.7, 944–947.Google Scholar
  53. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L. andMartell, E. A. (1972),The sulfur cycle, Science175, 587–599.Google Scholar
  54. Krezenski, D. C., Simonaitis, R. andHeicklen, J. (1971),The reactions of O(3P)with ozone and carbonyl sulfide, Int. J. Chem. Kin.3, 467–482.Google Scholar
  55. Kritz, M. A.,Formation mechanisms of the stratospheric aerosols, Ph.D. dissertation, Yale University (University Microfilms, 1975a).Google Scholar
  56. Kritz, M. (1975b),An advective hypothesis for the formation of the stratospheric aerosol layer, Journal de Physique,36, Coll. C8, Suppl. to No. 12, 17–23.Google Scholar
  57. Kurylo, M. J. (1978),Flash photolysis resonance fluorescence investigation of the reaction of OHradicals with OCSand CS2, Chem. Phys. Lett.58, 238–242.Google Scholar
  58. Lamb, H. H. (1970),Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance, Proc. Roy. Soc. London A,226, 425–533.Google Scholar
  59. Lazrus, A. L. andGandrud, B. W. (1974),Stratospheric sulfate aerosol, J. Geophys. Res.79, 3424–3431.Google Scholar
  60. Levy, H.,Photochemistry of the troposphere inAdv. in Photochemistry 9, 372–524, ed. by J. N. Pitts, G. S. Hammond and K. Gollrich (John Wiley and Sons, N.Y., 1974).Google Scholar
  61. Maroulis, P. J., Torres, A. L. andBandy, A. R. (1977),Atmospheric concentrations of carbonyl sulfide in the southwestern and eastern United States, Geophys. Res. Lett.4, 510–512.Google Scholar
  62. Maroulis, P. J., Torres, A. L., Goldberg, A. B. andBandy, A. R. (1978)Measurements of tropospheric background levels of SO2 on Project Gametag, Trans. Amer. Geophys. Union (EOS)59, 1081.Google Scholar
  63. Martell, E. A. (1966),The size distribution and interaction of radioactive and natural aerosols in the stratosphere, Tellus18, 486–498.Google Scholar
  64. Moortgat, G. K. andJunge, C. E. (1977),The role of the SO2 oxidation for the background stratospheric sulfate layer in the light of new reaction rate data, Pure Appl. Geophys.,115, 759–774.Google Scholar
  65. National Academy of Sciences,Halocarbons: Effects on Stratospheric Ozone (National Academy of Science, Washington, D.C., 1976), p. 106.Google Scholar
  66. Naval Environmental Protection Support Service,Particulate emissions from J79, J52, J57, TF30 and TF41 engines during test cell ferrocene evaluations (Report No. AESO-111-77, Naval Air Rework Facility, North Island, San Diego, Calif., 1977); also, private communication from L. E. Michalec.Google Scholar
  67. Payne, W. A., Stief, L. J. andDavis, D. D. (1973),A kinetic study of the reaction of HO2 with SO2 and NO, J. Amer. Chem. Soc.95, 7614–7619.Google Scholar
  68. Pepin, T. J. andMcCormick, M. P.,Observations of stratospheric aerosols from the Apollo-Soyuz test project (A.S.T.P.), in Proceedings of the Symposium on Radiation in the Atmosphere, ed by H.-J. Bolle, IAMAP Radiation Symposium; Garmisch-Partenkirchen, West Germany, Aug. 1976 (Science Press, Princeton, N.J., 1976), pp. 151–152.Google Scholar
  69. Peyton, T. O., Steele, R. V. andMabey, W. R.,Carbon disulfide, carbonyl sulfide: literature review and environmental assessment (Report No. 68-01-2940, Stanford Research Institute, Menlo Park, Calif., 1976), 57 pp.Google Scholar
  70. Pinnick, R. G., Rosen, J. M. andHofmann, D. J. (1976),Stratospheric aerosol measurements, III. Optical model calculations, J. Atmos. Sci.33, 304–314.Google Scholar
  71. Podzimek, J., Haberl, H. J. andSedlacek, W. A.,Recent measurements of Aitken nuclei in the lower stratosphere, in Proceedings of the Fourth Conference on the Climatic Impact Assessment program, ed. by T. M. Hard and A. J. Broderick, (U. S. Dept of Transportation DOT-TSC-OST-75-38, NTIS, Springfield, Va., 1975), pp. 519–526.Google Scholar
  72. Pollack, J. B., Toon, O. B., Sagan, C., Summers, A., Baldwin, B. andVan Camp, W. (1976a),Volcanic explosions and climatic change: A theoretical assessment, J. Geophys. Res.81, 1971–1983.Google Scholar
  73. Pollack, J. B., Toon, O. B., Summers, A., Baldwin, B., Sagan, C. andVan Camp, W. (1976b),Stratospheric aerosols and climatic change, Nature263, 551–555.Google Scholar
  74. Pollack, J. B., Toon, O. B., Summers, A., Van Camp, W. andBaldwin, B. (1976c),Estimates of the climatic impact of aerosols produced by space shuttles, SST's, and other high flying aircraft, J. Appl. Meteorol.15, 247–258.Google Scholar
  75. Poppoff, R. C., Whitten, R. C., Turco, R. P. andCapone, L. A.,An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content (NASA Reference Publ. 1026, NTIS, Springfield, Va., 1978).Google Scholar
  76. Rosen, J. M., Hofmann, D. J. andLaby, J. (1975),Stratospheric aerosol measurements. II. The worldwide distribution, J. Atmos. Sci.32, 1457–1462.Google Scholar
  77. Rosen, J. M. andHofmann, D. J. (1977),Balloon-borne measurements of condensation nuclei, J. Appl. Meteor.16, 56–62.Google Scholar
  78. Rosen, J. M., Hofmann, D. J. andSingh, S. P. (1978),A steady-state stratospheric aerosol model, J. Atmos. Sci.35, 1304–1313.Google Scholar
  79. Russell, P. B. andHake, R. D. Jr. (1977),The post-Fuego stratospheric aerosol: Lidar measurements with radiative and thermal implications. J. Atmos. Sci.34, 163–177.Google Scholar
  80. Sandalls, F. J. andPenkett, S. A. (1977),Measurements of carbonyl sulfide and carbon disulfide in the atmosphere, Atmos. Env.11, 197–199.Google Scholar
  81. Schofield, K. (1973),Evaluated chemical kinetic rate constants for various gas phase reactions, J. Phys. Chem. Ref. Data2, 25–84.Google Scholar
  82. Scott, W. D., Lamb, D. andDuffy, D. (1969),The stratospheric aerosol layer and anhydrous reactions between ammonia and sulfur dioxide, J. Atmos. Sci.26, 727–733.Google Scholar
  83. Stoiber, R. E., Leggett, D. C., Jenkins, R. F., Murrmann andRose, E. I. (1971),Organic compounds in volcanic gas from Santiaguito volcano, Guatemala, Bull. Geolog. Soc. Amer.82, 2299–2302.Google Scholar
  84. Telegadas, K. andList, R. J. (1969),Areparticulate radioactive tracers indicative of stratospheric motions? J. Geophys. Res.74, 1339–1350.Google Scholar
  85. Toon, O. B. andPollack, J. B. (1976),A global average model of atmospheric aerosols for radiative transfer calculations, J. Appl. Meteorol.15, 225–246.Google Scholar
  86. Toon, O. B., Turco, R. P., Hamill, P., Kiang, C. S. andWhitten, R. C. (1979),A one-dimensional model describing aerosol formation and evolution in the stratosphere. II. Sensitivity studies and comparison with observations, J. Atmos. Sci.36, 718–736.Google Scholar
  87. Torres, A. L., Maroulis, P. J., Goldberg, A. B. andBandy, A. R. (1978),Measurements of tropospheric OCSon the 1978 GAMETAG flights, Trans. Amer. Geophys. Union (EOS)59, 1082.Google Scholar
  88. Turco, R. P., Hamill, P., Toon, O. B. andWhitten, R. C. (1976),A model of the stratospheric sulfate aerosol, Atmospheric Aerosols: Their Optical Properties and Effects, A topical meeting on atmospheric aerosols, (Williamsburg, Virginia, Dec. 1976, Paper WA4, NASA CP-2004.Google Scholar
  89. Turco, R. P. andWhitten, R. C.,The NASA-Ames Research Center one-and two-dimensional stratospheric models. I. The one-Dimensional model (NASA Tech. Paper 1002, NTIS, Springfield, Va., 1977), 30 pp.Google Scholar
  90. Turco, R. P., Hamill, P., Toon, O. B., Whitten, R. C. andKiang, C. S. (1979a),A one-dimensional model describing aerosol formation and evolution in the stratosphere. 1. Physical processes and mathematical analogues. J. Atmos. Sci.36, 699–717; also see NASA Technical Paper 1362 (NTIS, springfield, Va., 1979) by the same authors.Google Scholar
  91. Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B. andHamill P. (1979b),Carbonyl sulfide, stratopheric aerosols, and terrestrial climate, Nature (submitted).Google Scholar
  92. Warneck, P., Marmo, F. F. andSullivan, J. O. (1964),Ultravioletabsorption of SO2;Dissociation energies of SO2 and SO, J. Chem. Phys.40, 1132–1137.Google Scholar
  93. Westenberg, A. A. andde Haas, N. (1969),Atom-moleculekinetics using ESR detection. V. Results for O+OCS, O+CS2, O+NO2,and H+C2H4, J. Chem. Phys.50, 707–719.Google Scholar
  94. Westenberg, A. A., andde Haas, N. (1975),Rate of the reaction O+SO2+M→SO3+M, J. Chem. Phys.63, 5411–5415.Google Scholar
  95. Whitten, R. C. andTurco, R. P.,Gas phase chemistry in the Ames stratospheric aerosol model, Atmospheric Aerosols: Their Optical Properties and Effects. A topical meeting on atmospheric aerosols, Williamsburg, Virginia, Dec. 1976, Paper W A3, NASA CP-2004.Google Scholar
  96. Wofsy, S. C. andMcElroy, M. B. (1973),On vertical mixing in the upper stratosphere and lower mesosphere, J. Geophys. Res.78, 2619–2624.Google Scholar

Copyright information

© Birkhäuser Verlag 1980

Authors and Affiliations

  • R. C. Whitten
    • 1
  • O. B. Toon
    • 1
  • R. P. Rurco
    • 2
  1. 1.Space Science Division Ames Research CenterNASAMoffett FieldUSA
  2. 2.Marina del ReyUSA

Personalised recommendations