Skip to main content
Log in

In vitro conjugative transfer of VanA vancomycin resistance betweenEnterococci andListeriae of different species

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

In a study designed to gain data on the in vitro transferability of vancomycin resistance from enterococci of the VanA phenotype to listeriae of different species, three clinicalEnterococcus isolates —Enterococcus faecium LS10,Enterococcus faecalis LS4, andEnterococcus faecalis A3208, all harboring a plasmid that strongly hybridized with avanA probe — were used as donors in transfer experiments. Strains of fiveListeria species were used as recipients. FromEnterococcus faecium LS10, glycopeptide resistance was transferred toListeria monocytogenes, Listeria ivanovii, andListeria welshimeri recipients, whereas no transfer occurred toListeria seeligeri orListeria innocua strains. From the twoEnterococcus faecalis isolates, no transfer occurred to anyListeria recipient. MICs of both vancomycin and teicoplanin were ≥256 mg/l for all transconjugants tested. Furthermore, all transconjugants harbored a plasmid that strongly hybridized with thevanA probe, withvanA consistently located in anEcoRI fragment of about 4 kb. Exposure ofListeria transconjugants to vancomycin resulted in synthesis of a membrane protein similar in size (39 kDa) to a vancomycin-induced membrane protein ofEnterococcus faecium LS10. In retransfer experiments withListeria transconjugants used as donors, glycopeptide resistance was transferred to allListeria recipients tested, including strains ofListeria innocua andListeria seeligeri, which were unable to receive the resistance fromEnterococcus faecium LS10. The frequency ofvanA transfer to listerial recipients was greater in retransfer experiments than in the primary matings. These findings suggest that thevanA resistance determinant might spread to the established pathogenListeria monocytogenes, both directly from a resistant enterococcus and through strains of nonpathogenicListeria species acting as intermediate resistance vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson APR, O'Hare MD, Felmingham D, Grüneberg RN: Teicoplanin-resistant coagulase-negative staphylococcus. Lancet 1986, ii: 973.

    Google Scholar 

  2. Arioli V, Pallanza R: Teicoplanin-resistant coagulasenegative staphylococci. Lancet 1987, i: 39.

    Google Scholar 

  3. Schwalbe RS, Stapleton JT, Gilligan PH: Emergence of vancomycin resistance in coagulase-negative staphylococci. New England Journal of Medicine 1987, 316: 927–931.

    Google Scholar 

  4. Uttley AHC, Collins CH, Naidoo J, George RC: Vancomycin-resistant enterococci. Lancet 1988, i: 57–58.

    Google Scholar 

  5. Leclercq R, Derlot E, Duval J, Courvalin P: Plasmid-mediated resistance to vancomycin and teicoplanin inEnterococcus faecium. New England Journal of Medicine 1988, 319: 157–161.

    Google Scholar 

  6. Nagarajan R: Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrobial Agents and Chemotherapy 1991, 35: 605–609.

    Google Scholar 

  7. Biavasco F, Lupidi R, Varaldo PE: In vitro activities of three semisynthetic amide derivatives of teicoplanin, MDL 62208, MDL 62211, and MDL 62873. Antimicrobial Agents and Chemotherapy 1992, 36: 331–338.

    Google Scholar 

  8. Spera RV Jr, Farber BF: Multiply-resistantEnterococcus faecium: the nosocomial pathogen of the 1990s. Journal of the American Medical Association 1992, 268: 2563–2564.

    Google Scholar 

  9. Moellering RC Jr: The enterococcus: a classic example of the impact of antimicrobial resistance on therapeutic options. Journal of Antimicrobial Chemotherapy 1991, 28: 1–12.

    Google Scholar 

  10. Cohen ML: Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992, 257: 1050–1055.

    Google Scholar 

  11. Arthur M, Courvalin P: Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrobial Agents and Chemotherapy 1993, 37: 1563–1571.

    Google Scholar 

  12. Shlaes DM, Bouvet A, Devine C, Shlaes JH, Al-Obeid S, Williamson R: Inducible, transferable resistance to vancomycin inEnterococcus faecalis A256. Antimicrobial Agents and Chemotherapy 1989, 33: 198–203.

    Google Scholar 

  13. Nicas TI, Wu CYE, Hobbs JN Jr, Preston DA, Allen NE: Characterization of vancomycin resistance inEnterococcus faecium andEnterococcus faecalis. Antimicrobial Agents and Chemotherapy 1989, 33: 1121–1124.

    Google Scholar 

  14. Dutka-Malen S, Molinas C, Arthur M, Courvalin P: The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Molecular and General Genetics 1990, 224: 364–372.

    Google Scholar 

  15. Bugg TDH, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT: Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity. Biochemistry 1991, 30: 2017–2021.

    Google Scholar 

  16. Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT: Molecular basis for vancomycin resistance inEnterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 1991, 30: 10408–10415.

    Google Scholar 

  17. Arthur M, Molinas C, Depardieu F, Courvalin P: Characterization of Tn7546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors inEnterococcus faecium BM4147. Journal of Bacteriology 1993, 175: 117–127.

    Google Scholar 

  18. Leclercq R, Derlot E, Weber M, Duval J, Courvalin P: Transferable vancomycin and teicoplanin resistance inEnterococcus faecium. Antimicrobial Agents and Chemotherapy 1989, 33: 10–15.

    Google Scholar 

  19. Uttley AHC, George RC, Naidoo J, Woodford N, Johnson AP, Collins CH, Morrison D, Gilfillan AJ, Fitch LE, Heptonstall J: High-level vancomycin-resistant enterococci causing hospital infections. Epidemiology and Infection 1989, 103: 173–181.

    Google Scholar 

  20. Handwerger S, Pucci MJ, Kolokathis A: Vancomycin resistance is encoded on a pheromone response plasmid inEnterococcus faecium 228. Antimicrobial Agents and Chemotherapy 1990, 34: 358–360.

    Google Scholar 

  21. Dutka-Malen S, Leclercq R, Coutant V, Duval J, Courvalin P: Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrobial Agents and Chemotherapy 1990, 34: 1875–1879.

    Google Scholar 

  22. Noble WC, Virani Z, Cree RGA: Co-transfer of vancomycin and other resistance genes fromEnterococcus faecalis NCTC 12201 toStaphylococcus aureus. FEMS Microbiology Letters 1992, 93: 195–198.

    Google Scholar 

  23. Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P: Transferable plasmid-mediated antibiotic resistance inListeria monocytogenes. Lancet 1990, 335; 1422–1426.

    Google Scholar 

  24. Quentin C, Thibaut MC, Horovitz J, Bebear C: Multiresistant strains ofListeria monocytogenes. Lancet 1990, 336: 375.

    Google Scholar 

  25. MacGowan AP, Reeves DS, McLauchlin J: Antibiotic resistance inListeria monocytogenes. Lancet 1990, 336: 513–514.

    Google Scholar 

  26. Facinelli B, Giovanetti E, Varaldo PE, Casolari C, Fabio U: Antibiotic resistance in foodborne listeria. Lancet 1991, 338: 1272.

    Google Scholar 

  27. Poyart-Salmeron C, Trieu-Cuot P, Carlier C, MacGowan A, McLauchlin J, Courvalin P: Genetic basis of tetracycline resistance in clinical isolates ofListeria monocytogenes. Antimicrobial Agents and Chemotherapy 1992, 36: 463–466.

    Google Scholar 

  28. Flamm RK, Hinrichs DJ, Thomashow MF: Introduction of pAMβ1 intoListeria monocytogenes by conjugation and homology betweenListeria monocytogenes plasmids. Infection and Immunity 1984, 44: 157–161.

    Google Scholar 

  29. Vicente MF, Baquero F, Pérez-Diaz JC: Conjugative acquisition and expression of antibiotic resistance determinants inListeria spp. Journal of Antimicrobial Chemotherapy 1988, 21: 309–318.

    Google Scholar 

  30. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P: Inducible transfer of conjugative transposon Tn7545 fromEnterococcus faecalis toListeria monocytogenes in the digestive tract of gnotobiotic mice. Antimicrobial Agents and Chemotherapy 1991, 35: 185–187.

    Google Scholar 

  31. Charpentier E, Gerbaud G, Courvalin P: Presence of theListeria tetracycline resistance genetet(S) inEnterococcus faecalis. Antimicrobial Agents and Chemotherapy 1994, 38: 2330–2335.

    Google Scholar 

  32. Facinelli B, Roberts MC, Giovanetti E, Casolari C, Fabio U, Varaldo PE: Genetic basis of tetracycline resistance in food-borne isolates ofListeria innocua. Applied and Environmental Microbiology 1993, 59: 614–616.

    Google Scholar 

  33. Venditti M, Biavasco F, Varaldo PE, Macchiarelli A, DeBiase L, Marino B, Serra P: Catheter-related endocarditis due to glycopeptide-resistantEnterococcus faecalis in a transplanted heart. Clinical Infectious Diseases 1993, 17: 524–525.

    Google Scholar 

  34. Manso E, De Sio G, Biavasco F, Varaldo PE, Sambo G, Maffei C: Vancomycin-resistant enterococci. Lancet 1993, 342: 615–617.

    Google Scholar 

  35. Jacob AE, Hobbs SJ: Conjugal transfer of plasmid-borne multiple antibiotic resistance inStreptococcus faecalis var.zymogenes. Journal of Bacteriology 1974, 117: 360–372.

    Google Scholar 

  36. National Committee for Clinical Laboratory Standards: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. NCCLS, Villanova, PA, 1993.

    Google Scholar 

  37. Willetts N: Conjugation. In: Grinsted J, Bennet PM (ed): Methods in microbiology (volume 21). Academic, London, 1988, p. 49–77.

    Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

    Google Scholar 

  39. O'Sullivan DJ, Klaenhammer TR: Rapid mini-prep isolation of high-quality plasmid DNA fromLactococcus andLactobacillus spp. Applied and Environmental Microbiology 1993, 59: 2730–2733.

    Google Scholar 

  40. Pierre J, Boisivon A, Gutmann L: Alteration of PBP 3 entails resistance to imipenem inListeria monocytogenes. Antimicrobial Agents and Chemotherapy 1990, 34: 1695–1698.

    Google Scholar 

  41. Biavasco F, Giovanetti E, Montanari MP, Lupidi R, Varaldo PE: Development of in-vitro resistance to glycopeptide antibiotics: assessment in staphylococci of different species. Journal of Antimicrobial Chemotherapy 1991, 27: 71–79.

    Google Scholar 

  42. Klare I, Heier H, Claus H, Witte W: Environmental strains ofEnterococcus faecium with inducible high-level resistance to glycopeptides. FEMS Microbiology Letters 1993, 106: 23–30.

    Google Scholar 

  43. Bates J, Jordens JZ, Griffiths DT: Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. Journal of Antimicrobial Chemotherapy 1993, 34: 507–516.

    Google Scholar 

  44. Clewell DB: Plasmids, drug resistance, and gene transfer in the genusStreptococcus. Microbiological Reviews 1981, 45: 409–436.

    Google Scholar 

  45. Dutka-Malen S, Blaimont B, Wauters G, Courvalin P: Emergence of high-level resistance to glycopeptides inEnterococcus gallinarum andEnterococcus casseliflavus. Antimicrobial Agents and Chemotherapy 1994, 38: 1675–1677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biavasco, F., Giovanetti, E., Miele, A. et al. In vitro conjugative transfer of VanA vancomycin resistance betweenEnterococci andListeriae of different species. Eur. J. Clin. Microbiol. Infect. Dis. 15, 50–59 (1996). https://doi.org/10.1007/BF01586185

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01586185

Keywords

Navigation