Skip to main content
Log in

On the exponent average of integer sequences

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let ω(m) denote the number of distinct prime factors of the integerm, let Ω(m) be the number of prime factors ofm counted with multiplicities. The exponent averageA(m) is defined byA(m)=Ω(m)/ω(m) form>1, andA(1)=1. If (m n) is a sequence of positive integers, we can study the asymptotic exponent average lim n→∞ A(mn) (if it exists) resp. lim sup and lim inf.

In this article, we consider exponent averages for general sequences, and particularly for sequences of binomial coefficients as well as the divisor function. One of the many results on binomial coefficients is that

$$\mathop {\lim }\limits_{n \to \infty } A\left( {\left( {\begin{array}{*{20}c} {2n} \\ n \\ \end{array} } \right)} \right) = 1,$$

which shows that these binomial coefficients are almost squarefree. For the divisor functiond(n), we prove for instance

$$\mathop {\lim \sup }\limits_{n \to \infty } \frac{{A(d(n))\log \log n}}{{\log n}} = 1.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan, R. L.: On the factorization of integers. Proc. Amer. Math. Soc.25, 191–192 (1970).

    Google Scholar 

  2. Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers, 5th ed. Oxford: Univ. Press. 1979.

    Google Scholar 

  3. Iwaniec, H., Jutila, M.: Primes in short intervals. Arkiv för Mat.17, 167–176 (1979).

    Google Scholar 

  4. Iwaniec, H., Pintz, J.: Primes in short intervals. Mh. Math.98, 115–143 (1984).

    Google Scholar 

  5. Jutila, M.: On the numbers with a large prime factor, II. J. Indian Math. Soc.38, 125–130 (1974).

    Google Scholar 

  6. Lou, S., Yao, Q.: A Chebyshev's type of prime number theorem in a short interval, II. Hardy-Ramanujan-J.15, 1–33 (1992).

    Google Scholar 

  7. Montgomery, H. L.: Topics in Multiplicative Number Theory. Berlin-Heidelberg-New York: Springer. 1971.

    Google Scholar 

  8. Rieger, G. J.: Über einige arithmetische Summen. Manuscripta Math.7, 23–34 (1972).

    Google Scholar 

  9. Sander, J. W.: Prime power divisors of binomial coefficients. J. reine angew. Math.430, 1–20 (1992).

    Google Scholar 

  10. Sander, J. W.: An asymptotic formula for a-th powers dividing binomial coefficients. Mathematika39, 25–36 (1992).

    Google Scholar 

  11. Sander, J. W.: On primes not dividing binomial coefficients. Math. Proc. Cambr. Phil. Soc.113, 225–232 (1993).

    Google Scholar 

  12. Sander, J. W.: On numbers with a large prime power factor. Acta Math. Hung.63, 149–165 (1994).

    Google Scholar 

  13. Sárközy, A.: On Divisors of Binomial Coefficients, I. J. Number Theory20, 70–80 (1985).

    Google Scholar 

  14. Turán, P.: Az egész számok prímosztóinak számáról. Mat. Lapok.41, 103–130 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sander, J.W. On the exponent average of integer sequences. Monatshefte für Mathematik 120, 137–151 (1995). https://doi.org/10.1007/BF01585914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01585914

1991 Mathematics Subject Classification

Keywords

Navigation