Abstract
For anyD 1,D 2∈ℕ, leth(-D 1 D 2) denote the class number of the imaginary quadratic field\(\mathbb{Q}(\sqrt { - D_1 D_2 } )\). In this paper we prove that the equationD 1 x 2+D m2 =4y n.D 1,D 2,x, y, m, n∈, gcd (D 1x,D 2y=1,2Χm,n an odd prime,nΧh(-D 1 D 2, has only a finite number of solutions (D 1,D 2,x,y,m,n) withn>5. Moreover, the solutions satisfy 4y n<exp exp 470.
Similar content being viewed by others
References
Brtindza, B., Van der Poorten, A. J., Waldschmidt, M.: On the distribution and number of solutions of Thue's equation. In preparation.
Györy, K., Papp, Z. Z.: Norm form equations and explicit lower bounds for linear forms with algebraic coefficients. In: (To the memory of Paul Turán) Studies in Pure Mathematics, pp. 245–247. Budapest: Akadémiai Kiadó. 1983.
Le, M.-H.: A diophantine equation concerning the divisibility of the class number for some imaginary quadratic fields. Indag. Math. (N.S.)4, 65–70 (1993).
Lidl, R., Niederreiter, H.: Finite Fields. Reading, MA: Addison-Wesley. 1983.
Lijunggren, W.: On the diophantine equationx 2+D=4y n. Mh. Math.75, 136–143 (1971).
Ljunggren, W.: New theorems concerning the diophantine equationx 2+D=4y n. Acta Arith.2, 183–191 (1972).
Mignotte, M., Waldschmidt, M.: Linear forms in two logarithms and Schneider's method (III). Ann. Fac. Sci. Toulouse97, 43–75 (1990).
Persson, B.: On a diophantine equation in two unknowns. Ark. Mat.1, 45–57 (1949).
Stolt, B.: Die Anzahl von Lösungen gewisser diophantischer Gleichungen. Arch. Math.8, 393–400 (1957_.
Author information
Authors and Affiliations
Additional information
Supported by the National Natural Science Foundation of China
Rights and permissions
About this article
Cite this article
Maohua, L. On the diophantine equationD 1 x 2+D m2 =4y n . Monatshefte für Mathematik 120, 121–125 (1995). https://doi.org/10.1007/BF01585912
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01585912