Skip to main content
Log in

On the diophantine equationD 1 x 2+D m2 =4y n

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

For anyD 1,D 2∈ℕ, leth(-D 1 D 2) denote the class number of the imaginary quadratic field\(\mathbb{Q}(\sqrt { - D_1 D_2 } )\). In this paper we prove that the equationD 1 x 2+D m2 =4y n.D 1,D 2,x, y, m, n∈, gcd (D 1x,D 2y=1,2Χm,n an odd prime,nΧh(-D 1 D 2, has only a finite number of solutions (D 1,D 2,x,y,m,n) withn>5. Moreover, the solutions satisfy 4y n<exp exp 470.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brtindza, B., Van der Poorten, A. J., Waldschmidt, M.: On the distribution and number of solutions of Thue's equation. In preparation.

  2. Györy, K., Papp, Z. Z.: Norm form equations and explicit lower bounds for linear forms with algebraic coefficients. In: (To the memory of Paul Turán) Studies in Pure Mathematics, pp. 245–247. Budapest: Akadémiai Kiadó. 1983.

    Google Scholar 

  3. Le, M.-H.: A diophantine equation concerning the divisibility of the class number for some imaginary quadratic fields. Indag. Math. (N.S.)4, 65–70 (1993).

    Google Scholar 

  4. Lidl, R., Niederreiter, H.: Finite Fields. Reading, MA: Addison-Wesley. 1983.

    Google Scholar 

  5. Lijunggren, W.: On the diophantine equationx 2+D=4y n. Mh. Math.75, 136–143 (1971).

    Google Scholar 

  6. Ljunggren, W.: New theorems concerning the diophantine equationx 2+D=4y n. Acta Arith.2, 183–191 (1972).

    Google Scholar 

  7. Mignotte, M., Waldschmidt, M.: Linear forms in two logarithms and Schneider's method (III). Ann. Fac. Sci. Toulouse97, 43–75 (1990).

    Google Scholar 

  8. Persson, B.: On a diophantine equation in two unknowns. Ark. Mat.1, 45–57 (1949).

    Google Scholar 

  9. Stolt, B.: Die Anzahl von Lösungen gewisser diophantischer Gleichungen. Arch. Math.8, 393–400 (1957_.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maohua, L. On the diophantine equationD 1 x 2+D m2 =4y n . Monatshefte für Mathematik 120, 121–125 (1995). https://doi.org/10.1007/BF01585912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01585912

1991 Mathematics Subject Classification

Navigation