Skip to main content
Log in

A family of variable metric proximal methods

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider conceptual optimization methods combining two ideas: the Moreau—Yosida regularization in convex analysis, and quasi-Newton approximations of smooth functions. We outline several approaches based on this combination, and establish their global convergence. Then we study theoretically the local convergence properties of one of these approaches, which uses quasi-Newton updates of the objective function itself. Also, we obtain a globally and superlinearly convergent BFGS proximal method. At each step of our study, we single out the assumptions that are useful to derive the result concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, “Numerical methods for non-differentiable convex optimization,”Mathematical Programming Study 30 (1987) 102–126.

    Google Scholar 

  2. C.G. Broyden, J.E. Dennis and J.J. Moré, “On the local and superlinear convergence of quasi-Newton methods,”Journal of the Institute of Mathematics and its Applications 12 (1973) 223–245.

    Google Scholar 

  3. R.H. Byrd and J. Nocedal, “A tool for the analysis of quasi-Newton methods with application to unconstrained minimization,”SIAM Journal on Numerical Analysis 26 (1989) 727–739.

    Google Scholar 

  4. F.H. Clarke,Optimization and Non-Smooth Analysis (Wiley, New York, 1983).

    Google Scholar 

  5. R. Correa and C. Lemaréchal, “Convergence of some algorithms for convex minimization,”Mathematical Programming 62 (1993) 261–275.

    Google Scholar 

  6. J.E. Dennis and J.J. Moré, “A characterization of superlinear convergence and its application to quasi-Newton methods,”Mathematics of Computation 28 (1974) 549–560.

    Google Scholar 

  7. J.E. Dennis and J.J. Moré, “Quasi-Newton methods, motivation and theory,”SIAM Review 19 (1977) 46–89.

    Google Scholar 

  8. J.E. Dennis and R.B. Schnabel, “A view of unconstrained optimization,” in: G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds.,Handbook in Operations Research and Management Science, Vol. 1 (North-Holland, Amsterdam, 1989) 1–72.

    Google Scholar 

  9. M. Fukushima, “A descent algorithm for non-smooth convex programming,”Mathematical Programming 30 (1984) 163–175.

    Google Scholar 

  10. J.Ch. Gilbert and C. Lemaréchal, “Some numerical experiments with variable-storage quasi-Newton algorithms,”Mathematical Programming 45 (1989) 407–435.

    Google Scholar 

  11. W.A. Gruver and E. Sachs,Algorithmic Methods in Optimal Control, Research Notes in Mathematics No. 47 (Pitman, London, 1980).

    Google Scholar 

  12. S.M. Grzegórski, “Orthogonal projections on convex sets for Newton-like methods”,SIAM Journal on Numerical Analysis 22 (1985) 1208–1219.

    Google Scholar 

  13. J.B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms, Vols. 1 and 2 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).

    Google Scholar 

  14. C.-M. Ip and J. Kyparisis, “Local convergence of quasi-Newton methods for B-differentiable equations,”Mathematical Programming 56 (1992) 71–89.

    Google Scholar 

  15. K.C. Kiwiel, “Proximity control in bundle methods for convex non-differentiable minimization,”Mathematical Programming 46 (1990) 105–122.

    Google Scholar 

  16. B. Kummer, “Newton's method based on generalized derivatives for non-smooth functions: convergence analysis,” in: W. Oettli and D. Pallaschke, eds.,Advances in Optimization, Lecture Notes in Economics and Mathematical Systems No. 382 (Springer-Verlag, Berlin, Heidelberg, New York, 1991) 171–194.

    Google Scholar 

  17. C. Lemaréchal, “A view of line-searches,” in: A Auslender, W. Oettli and J. Stoer, eds.,Optimization and Optimal Control, Lecture Notes in Control and Information Science No. 30 (Springer-Verlag, Berlin, Heidelberg, New York, 1981) 59–78.

    Google Scholar 

  18. C. Lemaréchal and C. Sagastizábal, “An approach to variable metric bundle methods,” in: J. Henry and J.P. Yvor, eds.,Proceedings IFIP Conference Systems Modelling and Optimization, Lecture Notes in Control and Information Sciences No. 197 (Springer-Verlag, New York, 1994).

    Google Scholar 

  19. B. Martinet, “Régularisation d'inéquations variationelles par approximations successives,”Revue Française d'Informatique et Recherche Opérationelle R-3 (1970) 154–179.

    Google Scholar 

  20. R. Mifflin, “A quasi-second-order proximal bundle algorithm,” Technical Report 93-3, University of Washington (Pullman, Washington, 1993).

    Google Scholar 

  21. J.J. Moreau, “Proximité et dualité dans un espace hilbertien,”Bulletin de la Société Mathématique de France 93 (1965) 273–299.

    Google Scholar 

  22. J.M. Ortega and W.C. Rheinboldt,Iterative Solution of Non-linear Equations in Several Variables (Academic Press, New York, 1970).

    Google Scholar 

  23. J.-S. Pang, “Newton's method for B-differentiable equations,”Mathematics of Operations Research 15 (1990) 311–341.

    Google Scholar 

  24. J.S. Pang and L.Q. Qi, “Non-smooth equations: motivation and algorithms,”SIAM Journal on Optimization 3 (1993) 443–465.

    Google Scholar 

  25. M.J.D. Powell, “Some global convergence properties of a variable metric algorithm for minimization without exact line searches,” in: R.W. Cottle and C.E. Lemke, eds.,Non-linear Programming, SIAM—AMS Proceedings No. 9 (American Mathematical Society, Providence, RI, 1976).

    Google Scholar 

  26. L. Qi and J. Sun, “A non-smooth version of Newton's method,”Mathematical Programming 58 (1993) 353–367.

    Google Scholar 

  27. L.Q. Qi, “Convergence analysis of some algorithms for solving non-smooth equations,”Mathematics of Operations Research 18 (1993) 227–244.

    Google Scholar 

  28. M. Qian, “The variable metric proximal point algorithm: global and super-linear convergence,” Manuscript GN-50, University of Washington, Department of Mathematics (Seattle, WA, 1992).

    Google Scholar 

  29. S.M. Robinson, “Local structure of feasible sets in non-linear programming, part III: stability and sensitivity,”Mathematical Programming Study 30 (1987) 45–66.

    Google Scholar 

  30. R.T. Rockafellar,Convex Analysis (Princeton University, Princeton, NJ, 1970).

    Google Scholar 

  31. R.T. Rockafellar, “Monotone operators and the proximal point algorithm,”SIAM Journal on Control and Optimization 14 (1976) 877–898.

    Google Scholar 

  32. C.A. Sagastizábal, “Quelques méthodes numériques d'optimisation. Application en gestion de stocks,” Ph.D. thesis, University of Paris I, Panthéon-Sorbonne (Paris, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnans, J.F., Gilbert, J.C., Lemaréchal, C. et al. A family of variable metric proximal methods. Mathematical Programming 68, 15–47 (1995). https://doi.org/10.1007/BF01585756

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01585756

AMS Subject Classification

Keywords

Navigation