Skip to main content

Weakk-majorization and polyhedra

Abstract

For integersk andn withk ⩽ n a vectorx ∈ ℝ n is said to be weaklyk-majorized by a vectorq ∈ ℝ k if the sum of ther largest components ofx does not exceed the sum of ther largest components ofq, forr = 1,⋯,k. For a givenq the set of vectors weaklyk-majorized byq defines a polyhedronP(q; k). We determine the vertices of bothP(q; k) and its integer hullQ(q; k). Furthermore a complete and nonredundant linear description ofQ(q; k) is given. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

This is a preview of subscription content, access via your institution.

References

  1. G. Dahl, Pseudo experiments and majorization, Thesis, University of Oslo, 1984.

  2. G. Dahl, Polyhedra and optimization in connection with a weak majorization ordering, Preprint 10, 1994, Institute of Informatics, University of Oslo; see also: E. Balas and J. Clausen, eds.,Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 920 (Springer, Berlin, 1995).

    Google Scholar 

  3. J. Edmonds, Matroids and the greedy algorithm,Mathematical Programming 1 (1971) 127–136.

    Google Scholar 

  4. S. Fujishige,Submodular Functions and Optimization, Annals of Discrete Mathematics, Vol. 47 (Amsterdam, North-Holland, 1991).

    Google Scholar 

  5. M. Grötschel, L. Lovász and A. Schrijver,Geometric Algorithms and Combinatorial Optimization (Springer, Berlin, 1988).

    Google Scholar 

  6. G.H. Hardy, J.E. Littlewood and G. Polya,Inequalities, Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2nd ed., 1988).

    Google Scholar 

  7. A.W. Marshall and I. Olkin,Inequalities: Theory of Majorization and Its Applications (Academic Press, New York, 1979).

    Google Scholar 

  8. G.L. Nemhauser and L.A. Wolsey,Integer Programming and Combinatorial Optimization (Wiley, New York, 1988).

    Google Scholar 

  9. W.R. Pulleyblank, Polyhedral combinatorics, in: Nemhauser et al.. eds.,Handbooks in Operations Research, Vol. 1,Optimization (North-Holland, Amsterdam, 1989).

    Google Scholar 

  10. A. Schrijver,Theory of Linear and Integer Programming (Wiley, New York, 1986).

    Google Scholar 

  11. E. Torgersen,Comparison of Statistical Experiments (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dahl, G., Margot, F. Weakk-majorization and polyhedra. Mathematical Programming 81, 37–53 (1998). https://doi.org/10.1007/BF01584843

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01584843

Keywords

  • Majorization
  • Polyhedra