Advertisement

Journal of Industrial Microbiology

, Volume 10, Issue 1, pp 45–54 | Cite as

Ethanol tolerance and carbohydrate metabolism in lactobacilli

  • R. Shane Gold
  • M. M. Meagher
  • R. Hutkins
  • T. Conway
Article

Summary

This paper describes the ethanol tolerance and metabolism of 31 strains ofLactobacillus on glucose, xylose, lactose, cellobiose and starch. The purpose of this work was to determine the suitability of the 31 strains as potential host for the ethanol producing genes, pyruvate decarboxylase and aldehyde dehydrogenase, fromZymomonas mobilis. The 31 strains were screened for their ability to grow in 0 to 8% v/v ethanol on all five carbohydrates. Those strains that were able to grow to an OD of 1.0 in 8% ethanol were evaluated at ethanol concentrations up to 16%. v/v. The fermentative products from the five carbohydrates were analyzed to determine the ratios of lactic acid, ethanol, and acetic acid.

Key words

Ethanol Tolerance Lactobacillus Carbohydrate Utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alterthum, F. and L.O. Ingram. 1989. Efficient ethanol production from glucose, lactose, and xylose by recombinantEscherichia coli. Appl. Environ. Microbiol. 55: 1943–1948.Google Scholar
  2. 2.
    Beaven, M.J., C. Charpentier and A.H. Rose. 1982. Production and tolerance of ethanol in relation to phospholipid fatty acyl composition inSaccharomyces cerevisiae NYCY 431. J. Gen. Microbiol. 128: 1447–1455.Google Scholar
  3. 3.
    Bringer-Meyer, S., K.-L. Schimz and H. Sham. 1986. Pyruvate decarboxylase fromZymomonas mobilis. Isolation and partial characterization. Arch. Microbiol. 146: 105–110.Google Scholar
  4. 4.
    Buttke, T.M. and L.O. Ingram. 1978. Mechanism of ethanolinduced changes in lipid composition ofEscherichia coli: Inhibition of saturated fatty acid synthesis in vivo. Biochemistry 17: 637–644.Google Scholar
  5. 5.
    Buttke, T.M. and L.O. Ingram. 1980. Ethanol-induced changes in lipid composition ofEscherichia coli: Inhibition of saturated fatty acid synthesis in vitro. Arch. Biochem. Biophys. 203: 465–471.Google Scholar
  6. 6.
    Chassy, B.M. 1985. Prospects for improving economically significantLactobacillus strains by ‘genetic technology’. Trends Biotechnol. 3: 273–275.Google Scholar
  7. 7.
    Cheng, P., R.E. Mueller, S. Jaeger, R. Baipai and E.L. Iannotti. 1991. Lactic acid production from enzyme-thinned corn starch usingLactobacillus amylovorus. J. Indust. Microbiol. 7: 27–34.Google Scholar
  8. 8.
    de Man, J.C., M. Rogosa and M.E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130–135.Google Scholar
  9. 9.
    Dombek, K.M. and L.O. Ingram. 1984. Effects of ethanol on theEscherichia coli plasma membrane. J. Bacteriol. 157: 233–239.Google Scholar
  10. 10.
    Dubois, M., A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith. 1956. Colormetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.Google Scholar
  11. 11.
    Garvie, E.I. 1980. Bacterial lactate dehydrogenases. Microbiol. Rev. 44: 106–139.Google Scholar
  12. 12.
    Gottscchalk, G. 1986. Bacterial Metabolism (2nd Edn.), p. 216, Springer-Verlag, New York.Google Scholar
  13. 13.
    Heath, E.C., J. Hurwitz, B.L. Horecker and A. Ginsburg. 1958. Pentose formentation byLactobacillus plantarum. J. Biol. Chem. 231: 1009–1029.Google Scholar
  14. 14.
    Hutkins, R.W. and E.R. Kashket. 1986. Phosphotransferase activity inClostridium acetobutylicum from acidogenic and solventogenic phases of growth. Appl. Environ. Microbiol. 51: 1121–1123.Google Scholar
  15. 15.
    Ingram, L.O. 1976. Adaption of membrane lipids to alcohols. J. Bacteriol. 125: 670–678.Google Scholar
  16. 16.
    Ingram, L.O., T. Conway, D.P. Clark, G.W. Sewell and J.F. Preston. 1987. Genetic engineering of ethanol production inE. coli. Appl. Environ. Microbiol. 53: 2420–2425.Google Scholar
  17. 17.
    Ingram, L.O. and K.M. Dombek. 1987. On the evolution of alcohol tolerance in microrganisms. In: Perspectives in Biotechnology (Duarte, J.M.C., L.J. Archer, A.T. Bull and G. Holt, eds.), pp. 131–138, Plenum Press, New York.Google Scholar
  18. 18.
    Ingram, L.O., N.S. Vreeland and L.C. Eaton. 1980. Alcohol tolerance inEscherichia coli. Pharamacol. Biochem. Behav. 13: 191–195.Google Scholar
  19. 19.
    Kandler, O. and N. Weiss. 1986. Regular, nonsporing grampositive rods. In: Bergey's Manual of Systematic Bacteriology, Vol. 2 (Sheath, H.A., N.S. Mair, M.E. Sharpe, and J.G. Holt, eds.), pp. 1208–1234, Williams and Wilkins, Baltimore, MD.Google Scholar
  20. 20.
    Kitihara, K., T. Kaneko and O. Goto. 1957. Taxonomic studies on theHiochi-bacteria, specific saprophytes ofsake. I. Isolation and grouping of bacterial strains. J. Gen. Appl. Microbiol. 3: 102–110.Google Scholar
  21. 21.
    Nakamura, L.K. 1981.Lactobacillus amylovorus, a new starch-hydrolyzing species species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol. 31: 56–63.Google Scholar
  22. 22.
    Nakamura, L.K. and C.D. Crowell. 1979.Lactobacillus amylophilus, a new starch-hydrolyzinig species from swinewaste-corn fermentation. Dev. Ind. Microbiol. 20: 531–540.Google Scholar
  23. 23.
    Schneider, H. 1989. Conversion of pentoses to ethanol by yeast and fungi. Crit. Rev. Biotechnol. 9: 1–40.Google Scholar
  24. 24.
    Sharpe, M.E. 1981. The genusLactobacillus. In: The Prokaryotes, Vol. 2 (Starr, M.P., H. Stolp, H.G. Truper, A. Balows and H.G. Shelegel eds.), pp. 1653–1679, Springer Verlag, New York.Google Scholar
  25. 25.
    Sternberg, D., P. Vijakumar and E.T. Reese. 1977. β-Glucosidase: Microbiol production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23: 139–147.Google Scholar
  26. 26.
    Stockton, B.C., D.J. Mitchell, K. Grohmann and M.E. Himmell. 1991. Optimum β-d-glucosidase supplementation of cellulase for efficient conversion of cellulose to glucose. Biotechnol. Lett. 13: 57–62.Google Scholar
  27. 27.
    Uchida, K. 1974. Occurrence of saturated and monounsaturated fatty acids with unusually-long-chains (C20-C3) inLactobacillus heterohiochii, an alcoholphilic bacterium. Biochem. Biophys. Acta 348: 86–93.Google Scholar
  28. 28.
    Uchida, K. 1975. Alteration of the unsaturated to saturated ratio of fatty acids in bacterial lipids by alcohols. Agr. Biol. Chem. 39: 1515–1516.Google Scholar
  29. 29.
    Uchida, K. and K. Mogi. 1973. Cellular fatty acid spectra ofHiochi bacteria, alcohol-tolerant Lactobacilli, and their group separation. J. Gen. Appl. Microbiol. 19: 233–249.Google Scholar
  30. 30.
    Wood, T.M. and S.I. McCrae. 1979. Mechanisms of Enzymatic and Acid Catalysis. In: Hydrolysis of Cellulose, pp. 181–209, American Chemical Society, Washington DC.Google Scholar

Copyright information

© Society for Industrial Microbiology 1992

Authors and Affiliations

  • R. Shane Gold
    • 1
  • M. M. Meagher
    • 1
    • 2
  • R. Hutkins
    • 1
  • T. Conway
    • 3
  1. 1.Department of Food Science and TechnologyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  3. 3.School of Biological SciencesUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations