Journal of Industrial Microbiology

, Volume 10, Issue 1, pp 37–43 | Cite as

Isolation of (S)-2,3-dichloro-1-propanol assimilating bacterium, its characterization, and its use in preparation of (R)-2,3-dichloro-1-propanol and (S)-epichlorohydrin

  • N. Kasai
  • K. Tsujimura
  • K. Unoura
  • T. Suzuki


A bacterium that stereospecifically assimilates (S)-2,3-dichloro-1-propanol was isolated from soil by enrichment culture. By taxonomic studies, the strain was identified asAlcaligenes sp. The bacterium could degrade and assimilate some chlorohydrins. Its cell-free extracts, which had dehalogenase and epoxyhydrolase activities, converted various halohydrins to the dehalogenated alcohols, and epoxides to the diols. This strain was similar to (R)-2-3-dichloro-1-propanol assimilating bacterium in degradation of 2,3-dichloro-1-propanol, but had a somewhat different character. Optically pure (R)-2,3-dichloro-1-propanol (100% e.e.) was isolated from the racemate using the stereospecific assimilation by the bacterium. Highly pure optically active (S)-epichlorohydrin (99.5% e.e.) was obtained by treatment with aqueous NaOH. The new isolate was also compared to the (R)-2,3-dichloro-1-propanol assimilating bacterium.

Key words

Stereospecific degradation of 2,3-dichloro-1-propanol Alcaligenes sp Microbial resolution (R)-2,3-Dichloro-1-propanol (S)-Epichlorohydrin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldwin, J.J., A.W. Raab, K. Mensler, B.H. Arson and D.E. McClure. 1978. Synthesis of (R)- and (S)-epichlorohydrin. J. Org. Chem. 42: 4876–4878.Google Scholar
  2. 2.
    Golding, B.T. 1988. Synthesis and reactions of Chiral C3-units. Chemistry and Industry. 3. Oct.: 615–621.Google Scholar
  3. 3.
    McClure, D.E., E.L. Engelhaldt, K. Mensler, S. King, W.S. Saari, J.R. Huff and J.J. Baldwin. 1979. Chiral heteroaryloxymethyloxiranes. J. Org. Chem. 44: 1826–1831.Google Scholar
  4. 4.
    Cimetiere, B., L. Jacob and M. Julia. 1986. Resolution of oxiranes. Application to the synthesis of the platelet aggregation factor. Tetrahedron Lett. 27: 6329.Google Scholar
  5. 5.
    Kawamura, K., T. Ohta and G. Otani. 1990. An efficient synthesis of the optical isomers of Nipradiol. Chem. Pharm. Bull. 38: 2092–2096.Google Scholar
  6. 6.
    Takano, S., M. Yanase, Y. Sekiguchi and K. Ogasawara. 1987. Practical synthesis of α-amino-β-hydroxybutanoic acid (GABOB) from (R)-epichlorohydrin. Tetrahedron Lett. 28: 1783–1784.Google Scholar
  7. 7.
    Takano, S., M. Yanase, M. Takahashi and K. Ogasawara. 1987. Enantiodivergent synthesis of both enantiomers of Sulcatol and Matsutake alcohol from (R)-epichlorohydrin. Chem. Lett. 2017–2020.Google Scholar
  8. 8.
    Imai, T. and S. Nishida. 1990. Lewis acid promoted ringopening allylation of epichlorohydrin with allylic silanes and stannanes to afford 1-chloro-5-alken-2-ols. A short synthesis of (S)-(−)-ipsenol. J. Org. Chem. 55: 4849–4853.Google Scholar
  9. 9.
    Koden, M., T. Kuratate, F. Funada, K. Awane, K. Sakaguchi, Y. Shiomi and K. Kitamura. 1989. Ferroelectric liquid crystals incorporating the optically active δ-lactone ring. Jpn. J. Applied Physics. 29: 981–983.Google Scholar
  10. 10.
    Kasai, N., K. Tsujimura, K. Unoura and T. Suzuki. 1990. Degradation of 2,3-dichloro-1-propanol byPseudomonas sp. Agric. Biol. Chem. 54: 3185–3190.Google Scholar
  11. 11.
    Kasai, N., H. Shima and K. Tsujimura (Daiso Co., Ltd.), US Patent 4840907. 1989. Jun. 20.Google Scholar
  12. 12.
    Noel, R., Krieg et al. 1984. Bergey's Manual of Systematic Bacteriology, 1, 9th Edn., Williams & Wilkins, Baltimore.Google Scholar
  13. 13.
    Iwasaki, I., S. Utsumi and T. Ozawa. 1952. New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull. Chem. Soc. Japan. 25: 226.Google Scholar
  14. 14.
    Lowry, O.H., N.J. Rosenbrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.Google Scholar
  15. 15.
    Dale, J.A., D.L. Dull and H.S. Mosher. 1969. α-Methoxytrifluoromethylphenyl acetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J. Org. Chem. 34: 2543–2549.Google Scholar
  16. 16.
    V. Schurig. 1988. Enantiomer analysis by complexation chromatography. J. Chromatogr. 441: 135–153.Google Scholar
  17. 17.
    Arjan, J. Van den Wijngaard, D.B. Janssen and B. Witholt. 1989. Degradation of Epichlorohydrin and Halohydrins by Bacterial Cultures Isolated from Freshwater Sediment. J. Gen. Microbiol. 135: 2199–2208.Google Scholar
  18. 18.
    Janssen, D.B., D. Jager and B. Witholt. 1987. Degradation ofn-haloalkanes and α,ω-dihaloalkanes by wild-type and mutants ofAcinetobacter sp. Strain GJ70. Appl. Environ. Microbiol. 53: 561–566.Google Scholar
  19. 19.
    Castro, C.E. and E.W. Bartnicki. 1968. Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transhalogenation by aFlabobacterium sp. Biochemistry 7: 3213–3218.Google Scholar
  20. 20.
    Habets-Crutzen, A.Q.H., S.J.N. Carlier, J.A.M. de Bont, D. Witsuba, V. Schurig, S. Hartmans and J. Tramper. 1985. Stereospecific formation of 1,2-epoxypropane, 1,2-epoxybutane and 1-chloro-2,3-epoxypropane by alkene-utilizing bacteria. Enzyme Microb. Technol. 7: 17–21.Google Scholar

Copyright information

© Society for Industrial Microbiology 1992

Authors and Affiliations

  • N. Kasai
    • 1
  • K. Tsujimura
    • 1
  • K. Unoura
    • 1
  • T. Suzuki
    • 1
  1. 1.Research and Laboratories of Daiso Co., Ltd.AmagasakiJapan

Personalised recommendations