Skip to main content

Reactions involving carbamyl phosphate in the presence of precipitated calcium phosphate with formation of pyrophosphate: A model for primitive energy-conservation pathways

Abstract

The formation of carbamyl phosphate (CAP) in dilute solutions of cyanate (NCO) and orthophosphate (Pi) was measured both in the absence and in the presence of a precipitated matrix of calcium phosphate (Pi.Ca). The second-order rate constant and the free energy of CAP synthesis were not modified by the presence of the solid matrix, indicating that synthesis occurs in the homogeneous Pi-containing solution. The elimination reaction of CAP to form NCO and Pi followed first-order kinetics and the rate constant was the same whether or not calcium phosphate was present. Elimination was not complete, and the steady level of remaining CAP was that expected from the free energy of synthesis. The formation of pyrophosphate (PPi) was detected in CAP-containing medium only in the presence of calcium, showing a close correlation with the amount of precipitated Pi.Ca. Phosphorolysis of CAP followed a sigmoidal time course, compatible with adsorption of CAP to the solid matrix as a prelude to transphosphorylation. Addition of 5′-AMP and of short linear polyphosphates inhibited phosphorolysis of CAP. It is proposed that the presence of a solid phosphate matrix and the relative concentrations of cyano compounds, as well as those of nucleotides and inorganic polyphosphates, could have played a crucial role in the conservation of chemical energy of CAP and in its use in prebiotic phosphorylation reactions.

This is a preview of subscription content, access via your institution.

References

  1. Baldwin, E.: 1964,An Introduction to Comparative Biochemistry, Cambridge University Press, Cambridge (UK), 13–16.

    Google Scholar 

  2. Baltscheffsky, H., Lundin, M., Luxemburg, C., Nyrén, P., and Baltscheffsky, M.: 1986,Chem. Scr. 26B, 259–262.

    Google Scholar 

  3. Bernal, J. D.: 1951,The Physical Basis of Life, Routledge and Kegan Paul, London.

    Google Scholar 

  4. Boyer, P. D. and Bryan, D. M.: 1967,Methods Enzymol 10, 60–71.

    Google Scholar 

  5. Cairns-Smith, A. G.: 1982,Genetic Takeover and the Mineral Origins of Life, Cambridge University Press, London.

    Google Scholar 

  6. Chung, N. M., Lohrmann, R., and Orgel, L. E.: 1971,Tetrahedron 27, 1205–1210.

    Google Scholar 

  7. de Meis, L.: 1989,Biochim. Biophys. Acta 728, 333–349.

    Google Scholar 

  8. Ferris, J. P. and Usher, D. A.: 1983, in G. Zubay (ed.),Biochemistry, Addison-Wesley, Reading, MA, 1190–1241.

    Google Scholar 

  9. Ferris, J. P. and Hagan Jr, W. J.: 1986,Origins of Life 17, 69–84.

    Google Scholar 

  10. Ferris, J. P., Huang, C-H, and Hagan Jr, W. J.: 1988,Origins Life Evol. Biosphere 18, 121–133.

    Google Scholar 

  11. Fiske, C. H. and SubbaRow, Y.: 1925,J. Biol. Chem. 66, 375–400.

    Google Scholar 

  12. Hermes-Lima, M.: 1990,J. Mol. Evol. 31, 353–358.

    Google Scholar 

  13. Hermes-Lima, M. and Vieyra, A.: 1992,J. Mol. Evol. 35, 277–285.

    Google Scholar 

  14. Hermes-Lima, M., Tessis, A. C., and Vieyra, A.: 1990,Origins Life Evol. Biosphere 20, 27–41.

    Google Scholar 

  15. Hulshoff, J. and Ponnamperuma, C.: 1976,Origins of Life 7, 197–224.

    Google Scholar 

  16. Jones, M. E. and Lipmann, F.: 1960,Proc. Natl. Acad. Sci. (USA)46, 1194–1205.

    Google Scholar 

  17. Krane, S. M. and Glimcher, M. J.: 1962,J. Biol. Chem. 237, 2991–2998.

    Google Scholar 

  18. Lahav, N. and Chang, S.: 1976,J. Mol. Evol. 8, 357–380.

    Google Scholar 

  19. Lahav, N. and Chang, S.: 1982,J. Mol. Evol. 19, 36–46.

    Google Scholar 

  20. Lorhmann, R. and Orgel, L. E.: 1971,Science 171, 490–494.

    Google Scholar 

  21. McClendon, J. H.: 1976,J. Mol. Evol. 8, 175–195.

    Google Scholar 

  22. Meyer-Fernandes, J. R. and Vieyra, A.: 1988,Arch. Biochem. Biophys. 266, 132–141.

    Google Scholar 

  23. Miller, S. L. and Urey, H. C.: 1959,Science 130, 245–251.

    Google Scholar 

  24. Miller, S. L. and Parris, M.: 1964,Nature 204, 1248–1250.

    Google Scholar 

  25. Neuman, M. W., Neuman, W. F., and Lane, K.: 1970,Curr. Mod. Biol. 3, 277–283.

    Google Scholar 

  26. Oestreich, C. H. and Jones, M. M.: 1966,Biochemistry 5, 3151–3156.

    Google Scholar 

  27. Orgel, L. E.: 1973,The Origins of Life: Molecules and Natural Selection, John Wiley & Sons, Inc., New York.

    Google Scholar 

  28. Oró, J.: 1972,Space Life Sci. 3, 507–550.

    Google Scholar 

  29. Rabinowitz, J., Flores, J., Krebsbach, R., and Rogers, G.: 1969,Nature 224, 795–796.

    Google Scholar 

  30. Rao, M., Odom, D. G., and Oró, J.: 1980,J. Mol. Evol. 15, 317–331.

    Google Scholar 

  31. Rodriguez, L. and Orgel, L. E.: 1991,J. Mol. Evol. 32, 101–104.

    Google Scholar 

  32. Saygin, O.: 1983,Origins of Life 13, 43–48.

    Google Scholar 

  33. Saygin, O.: 1984,Origins of Life 14, 131–138.

    Google Scholar 

  34. Schwartz, A. and Ponnamperuma, C.: 1968,Nature 218, 443.

    Google Scholar 

  35. Shen, C., Lazcano, A., and Oró, J.: 1990,J. Mol. Evol. 31, 445–452.

    Google Scholar 

  36. van Kemenade, M. J. J. M. and Bruyn, P. L.: 1987,J. Colloid Interface Sci. 188, 564–585.

    Google Scholar 

  37. Vieyra, A., Meyer-Fernandes, J. R., and Gama, O. B. H.: 1985,Arch. Biochem. Biophys. 238, 574–583.

    Google Scholar 

  38. Yamagata, Y. and Mohri, T.: 1982,Origins of Life 12, 41–44.

    Google Scholar 

  39. Yamagata, Y., Kojima, H., Ejiri, K., and Inomata, K.: 1982,Origins of Life 12, 333–337.

    Google Scholar 

  40. Yamagata, Y, Watanabe, H., Saitoh, M., and Namba, T.: 1991,Nature 352, 516–519.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vieyra, A., Gueiros-Filho, F., Meyer-Fernandes, J.R. et al. Reactions involving carbamyl phosphate in the presence of precipitated calcium phosphate with formation of pyrophosphate: A model for primitive energy-conservation pathways. Origins Life Evol Biosphere 25, 335–350 (1995). https://doi.org/10.1007/BF01581774

Download citation

Keywords

  • Pyrophosphate
  • Calcium Phosphate
  • Cyano
  • Polyphosphates
  • Solid Matrix