Skip to main content
Log in

The quantization of Regge calculus

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We discuss the quantization of Regge's discrete description of Einstein's theory of gravitation. We show how the continuum theory emerges in the weak field long wavelength limit. We also discuss reparametrizations and conformal transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rocek, R.M. Williams: Phys. Lett.104B, 31 (1981)

    Google Scholar 

  2. T. Regge: Nuovo Cimento19, 558 (1961)

    Google Scholar 

  3. M. Rocek, R.M. Williams: Introduction to quantum Regge calculus. In: Quantum structure of space and time eds. C. Isham, M. Duff. Cambridge: Cambridge University Press 1982

    Google Scholar 

  4. J.A. Wheeler: In: Relativity, groups and topology. ed. C. DeWitt, B. DeWitt. New York: Gordon and Breach, 1964; Cheuk-Yin Wong: J. Math. Phys.12, 70 (1971); P.A. Collins, R.M. Williams: Phys. Rev.D7, 1908 (1972); Phys. Rev.D7, 965 (1973); Phys. Rev.D10, 3537 (1974); R. Sorkin: Phys. Rev.D12, 385 (1972); R.M. Williams, G.F.R. Ellis: Regge calculus and observations: I. Formalism and applications to radial motion and circular orbits. Gen. Rel. Grav.13, 361 (1981)

    Google Scholar 

  5. R. Sorkin: J. Math. Phys.16, 2432 (1975)

    Google Scholar 

  6. G. Ponzano, T. Regge: In: Spectroscopic and group theoretical methods in physics, eds. F. Bloch, S.G. Cohen, A. De-Shalit, S. Sambursky, I. Talmi, pp. 1–58. New York, Wiley 1968; B. Hasslacher M.J. Perry: Phys. Lett.103B, 21 (1981)

    Google Scholar 

  7. L. Smolin: Nucl. Phys.B 146, 333 (1979); A. Das, M. Kaku, P.K. Townsend: Phys. Lett.B81, 11 (1979); M. Kaku: In: Superspace and supergravity. eds. S.W. Hawking, M. Rocek. Cambridge: Cambridge University Press 1981; C. Mannion, J.G. Taylor: Phys. Lett.100B, 261 (1981); An alternative approach by K.I. Macrae: Phys. Rev.D23, 900 (1981) is expressed not in terms of the intrinsic geometry of the 4-dimensional spacetime, but in terms of its embedding in flat 10-dimensional space; M. Martellin: D.A.M.T.P. preprint (1980). This article follows a course completely orthogonal to ours by treating the deficit angles as independent “coupling constants” unrelated to the link lengths. In our opinion, such a theory does not describe gravitation

    Google Scholar 

  8. M. Veltman: In: Methods in field theory. eds. R. Balian, J. Zinn-Justin. Amsterdam: North Holland 1976

    Google Scholar 

  9. R. Penrose: Private Communication

  10. R.P. Feynman, A.R. Hibbs: Quantum mechanics and path integrals. P. 357. New York: McGraw-Hill

  11. S.W. Hawking: In: General relativity. Eds. S.W. Hawking, W. Israel. Cambridge: Cambridge University Press 1979

    Google Scholar 

  12. N. Warner, Proc. R. Soc. Lond.A383, 359 (1982)

    Google Scholar 

  13. J.B. Hartle, R. Sorkin: Gen Rel. Grav.13, 541 (1981)

    Google Scholar 

  14. J. Cheeger, W. Müller, R. Schrader: Talk presented at the Heisenberg Symposium, München 1981

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by the National Science Foundation under grant SPI-801 8080

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roček, M., Williams, R.M. The quantization of Regge calculus. Z. Phys. C - Particles and Fields 21, 371–381 (1984). https://doi.org/10.1007/BF01581603

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01581603

Keywords

Navigation