Advertisement

Stochastic Hydrology and Hydraulics

, Volume 7, Issue 1, pp 41–65 | Cite as

Two kinds of moment ratio diagrams and their applications in hydrology

  • B. Bobee
  • L. Perreault
  • F. Ashkar
Originals

Abstract

We refocus attention on moment ratio diagrams and their uses in hydrology with four major objectives: (1) to summarize the information available in the literature about possible uses of the traditional moment ratio diagram introduced by Karl Pearson, which uses the coefficient of skewness and of kurtosis to compare the shapes of various distributions commonly used in hydrology; (2) to complete this traditional MRD by integrating into it the regions occupied by the log-Pearson Type III and generalized gamma distributions which are more and more used in hydrology; (3) to present another MRD which uses ratios of moments of orders −1 (harmonic mean), quasi zero (geometric mean) and 1 (arithmetic mean); (4) to stress the need to consider the different MRD's (along with the more recently introduced L-moment ratio diagrams) as complementary tools for choosing between distributions fitted to hydrologic data. Finally, using Monte Carlo simulation we compare the two types of diagrams as tools to identify and discriminate between different distributions.

Key words

Moment ratio diagrams Log-Pearson Type III Generalized Gamma geometric mean harmonic mean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, J. H.; Dieter, U. 1974: Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing 12, 223–246Google Scholar
  2. Aitchison, J.; Brown, J. A. C. 1957: The log-normal distribution with special reference to its uses in economics. London: Cambridge University PressGoogle Scholar
  3. Alexander, G. N.; Karoly, A.; Susts, A. B. 1969: Equivalent distributions with application to rainfall as an upper bound to flood distributions. Journal of Hydrology 9, 322–344Google Scholar
  4. Ashkar, F.; Haché, M.; Ouarda, T.; Bobée, B. 1992: On some methods of fitting the generalized pareto distribution. Submitted for publicationGoogle Scholar
  5. Benson, M. A. 1968: Uniform flood frequency estimating methods for federal agencies. Water Resour. Res. 4, 891–908Google Scholar
  6. Bobée, B. 1975: Étude des propriétés mathématiques et statistisques des lois Pearson type III et log Pearson type III. INRS-Eau, Rapport Scientifique 55Google Scholar
  7. Bobée, B.; Ashkar, F. 1988: The generalized method of moments applied to the log-Pearson 3 distribution. Journal of Hydraulic Engineering, ASCE 8, 899–909Google Scholar
  8. Bobée, B.; Ashkar, F. 1991: The gamma family and derived distributions applied in hydrology. Water Resources Publication, Littleton, Colorado, 203 ppGoogle Scholar
  9. Box, G. E. P.; Muller, M. E. 1958: A note on the generation of random normal deviates. Annals of Mathematical Statistics 29, 610–611Google Scholar
  10. Brunet-Moret Y. 1969: Étude de quelques lois statistiques utilisées en hydrologie. Cahiers d'hydrologie 6, 3Google Scholar
  11. Burr, I. W.; Cislak, P. J. 1968: On a general system of distributions. I. Its curve-shape characteristics. II. The sample median. American Statistical Association Journal 63, 627–635Google Scholar
  12. Craig, C. C. 1936: A new exposition and chart for the Pearson system of frequency curves. Annals of Mathematical Statistics 7, 16–28Google Scholar
  13. Foster, H. A. 1924: Theoretical frequency curves and their application to engineering problems. ASCE 87, 142–203Google Scholar
  14. Frind, E. O. 1969: Rainfall-runoff relationships expressed by distribution parameters. Journal of Hydrology 9, 405–426Google Scholar
  15. Gruska, G. F.; Mirkhani, K.; Lamberson, L.; Gillogly, B. 1975: Analysis of non normal data. 1975-ASQC Technical Conference Transactions, 140–148Google Scholar
  16. Hahn, G. J.; Shapiro, S. S. 1967: Statistical Models in Engineering. New York: John Wiley & Sons, Inc., New York, 355 ppGoogle Scholar
  17. Halphen, E. 1955: Les fonctions factorielles. Publications de l'Institut de Statistiques de l'Université de Paris, Volume IV, fascicule 1Google Scholar
  18. Hosking, J. R. M. 1989: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society B, 51Google Scholar
  19. Johnson, N. L. 1949: Systems of frequency curves generated by methods of translation. Biometrika, 36, 149–176Google Scholar
  20. Johnson, N. L. and Kotz, S. 1985: “Moment ratios” in Encyclopedia of Statistical Sciences, 5, 603–604Google Scholar
  21. Kendall, M. J.; Stuart, A.; Ord, J. K. 1987: The Advanced Theory of Statistics. Vol. 1, London: Charles Griffin, fifth ed. 604 ppGoogle Scholar
  22. Kirby, W. 1974: Algebraic boundness of sample statistics. Water Resour. Res. 10, 220–222Google Scholar
  23. Kritsky, S. N.; Menkel, M. F. 1969: On principles of estimation methods of maximum discharge. Floods and their computation. I.A.H.S. no. 84Google Scholar
  24. Lehmann, E. L. 1983: Theory of point estimation. New York: Wiley, 506 pp.Google Scholar
  25. Matalas, N. C. 1963: Probability distributions of low flows. U.S. Geological Survey. Prof. Rep. 437-A, 27 ppGoogle Scholar
  26. McMahon, T. A. 1979: Hydrological characteristics of arid zones. The hydrology of areas of low precipitation (Proceedings of the Camberra Symposium, December 1979). IAHS-Publ. no. 128Google Scholar
  27. Mooley, D. A. 1973: Gamma distribution probability model for asian summer monsoon monthly rainfall. Monthly Weather Review 2, 160–176Google Scholar
  28. Morlat, G. 1956: Les lois de probabilités de Halphen. Revue de Statistiques Appliquées 4, 21–46Google Scholar
  29. Ord, J. K. 1977: Graphical methods for a class of discrete distributions. Journal of the Royal Statistical Society A, 130Google Scholar
  30. Pearson, K. 1948: Mathematical contributions to the theory of evolution. XIX Second Supplement to a Memoir on Skew Variation. London: Kimble and BradfordGoogle Scholar
  31. Pearson, E. S.; Tukey, J. W. 1965: Approximate means and standard deviations based on distances between percentage points of frequency curves. Biometrika 52, 533–546Google Scholar
  32. Phien, H. N.; Nguyen, V. T. V.; Jung-Hua, K. 1986: Estimating the parameters of the generalized gamma distribution by mixed moments. Presented at the Int. Symp. on Flood Freq. and Risk Anal., May 14–17, Baton Rouge, LAGoogle Scholar
  33. Stacy, E. W. 1962: A generalization of the gamma distribution. Annals of Mathematical Statistics 33, 1187–1192Google Scholar
  34. W.M.O. (World Meterological Organization) 1989: Statistical distributions for flood frequency analysis. Operational Hydrology, Report No 33. WMO Publ. No 718, WMO, Geneva, SwitzerlandGoogle Scholar
  35. W.R.C. 1967: Guide lines for determining flood flow frequency. US Water Resources Council Hydrology Committee, Washington, D.C.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • B. Bobee
    • 1
  • L. Perreault
    • 1
  • F. Ashkar
    • 2
  1. 1.INRS-EauUniversité du QuébecSte-FoyCanada
  2. 2.Dept. de mathématiquesUniversité de MonctonMonctonCanada

Personalised recommendations